Coding Conventions for Sierpi

Martin Schreiber

July 5, 2012

1 Purpose

Different developers working together have usually different coding conventions.
Therefore an agreement to coding conventions has to be achieved when working
together on one project for several reasons. One of the main reasons is to keep
the code clean and thus to maintain a better code structure.

2 Coding conventions

2.1 Identation

Blocks and scopes have to be indented by using a single TAB for each identation.

2.2 Naming conventions
2.2.1 Types

Types are distinguished whether they are used as a
e class,
e class with templates
e typedef followed by a specialized class
e classes without templates
e atomic variables (int, char, float, ...)

When classes are defined, they are always prefixed with a capital letter
'C’ denoting that they are a class. Also classes with template parameters are
prefixed with the C’.

As soon as a class (with or without template parameters) is given as a
template parameter or redefined via a typedef, the 'C’ is replaced by a "I’ to
account for a fixed type without necessity of template parameters.



2.2.2 Variable naming

e For atomic types (int, char, float, etc.), all variables have to be written
using underscores and small letters.

e For class types, the variables have to be written without underscores with
the following exceptions: For better understanding, it is allowed to ex-
tend those types with underscores and further text. E. g. cEdgeComm-
Data_rightData_only. Variables which are derived from a class type start-
ing with a capital letter ’C’ (this should be usually the case), are expected
to start with a small letter 'c’. E. g. instantiating a variable with the type
"CEdgeComm’ would give a variable the name cEdgeComm.

2.2.3 Parameters for methods
parameters of methods are prefixed by i_, o_ or io_.
e i_ means that this parameter is accessed read/only (const).

e o_is used to declare this parameter as being an output reference to write
some output values.

e io_is used to declare an input/output pointer or reference which is read
and written.

Output parameters always have to be of type pointer. No references should
ever be used for output parameters! Return values handed back to the calling
method are still allowed and have so far no convention.

/%%
* some comment
*
* \return description of return value
*/
char foo(
const int i_bar_var,
///< this is a totally useless variable
const CSomeClass &i_cSomeClass ,
///< input via referenced parameter
CSomeClass xo_cSomeOutputClass
///< output via pointer parameter

while (true) {

}

return 42;

2.3 Template parameters

ALL template parameters have to be prefixed with a "t to differ between
template types and other types.



2.4 Comments

Comments are one of the most important thing in writing code. Therefore as
much comments as are necessary or being requested by other developers have
to be written.

T

x comments preceeding functions should

* follow the doxygen (www.doxygen.org)

x code—style

ES

* \return description of return value

*/

void foo(
const int i_bar_var, ///< this is totally useless
void xio_foo_var ///< this variable is not

///< able to drink beer
) |

while (true) {

}
}

constructor (
int i_val, ///< index
)

some_variable(i_val)

{
}



