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Abstract

Efficiently managing communication in High-Performance Computing (HPC) with
distributed memory systems is a significant challenge.

This thesis describes an approach to automatically generate code that implements
MPI communication for the CROCO ocean model. It creates a prototype that analyzes
data dependencies to determine when communication is necessary and implements the
required halo exchanges using asynchronous MPI operations. Evaluation shows that the
prototype successfully identifies and creates all necessary communication operations in
a test case. Additionally, it successfully reduces the number of necessary halo exchanges
by approximately 50%. Asynchronous communication did, however, not help to improve
performance as hoped.

All in all, the presented approach is able to automatically generate MPI communication
for CROCO, which can be used to facilitate code development or potentially optimize
communication.
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1 Introduction

High-performance computing (HPC) refers to the use of specific computing techniques
and technologies to solve problems requiring exceptionally high processing speeds and
large data sets. HPC uses powerful computing systems, often consisting of clusters of
processors, to perform computations and simulations at high speeds. Because of that,
it plays a key role in solving complex problems that require extensive computational
resources. Problems like that are found in many domains, including but not limited
to: search engines, oil reservoir modeling, cosmology, medicine development, fraud
detection and epidemiology [1]. Current progress in artificial intelligence is also based
on HPC techniques as it is driven by very high amounts of computational power.

HPC also plays a crucial role in weather forecasting and climate modeling. Weather
forecasting models rely heavily on HPC to accurately simulate and forecast atmospheric
conditions within strict timelines. Similarly, climate models operate like weather fore-
casts but aim to make predictions over extended timeframes, making execution times
even more important. Only with short computation times it is possible to forecast
weather quickly and at the same time accurately and with high resolution or to simulate
climate conditions over long periods of time [2].

To deal with very high computational demands like this, it is commonly necessary
to use hardware consisting of multiple cores, processors, or nodes. To use many cores
to work on the same problem, parallel computing is used, dividing tasks into smaller,
parallelizable components that can be processed simultaneously on multiple processors
or cores. This has become even more critical as traditional sequential computing,
which has historically relied on increasing clock frequencies to enhance performance,
reaches its limits as clock speeds can not easily be increased anymore due to escalating
power consumption and heat dissipation. The result of this is an increased focus on
parallelism and multi-core processors, enabling advances in computing performance
without significant increases in power and heat [3].

Parallel computing has emerged as a cornerstone of HPC because it provides a scalable
approach to solving computationally intensive problems. In parallel computing, the
workload is distributed across multiple processors, each of which handles a portion of
the task. This allows HPC systems to perform computations at much higher speeds, as
multiple processors operate concurrently to solve complex problems in a fraction of the
time it would take a single processor. It contrasts with traditional sequential computing,
where tasks are processed one at a time, and performance improvements are limited by
a single processor’s clock speed and efficiency. Parallel computing is especially relevant
in the context of modern HPC clusters, which often consist of clusters of processors or
nodes interconnected by high-speed communication networks.
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1 Introduction

A variety of system architectures are used in parallel computing in order to make
simultaneous processing possible. Multi-core and multi-processor computers have
multiple processing elements in a single machine. Meanwhile, distributed systems like
clusters and grids consist of several computers, each with multiple processors and cores,
connected through a communication network.

One important characteristic of distributed systems is the concept of distributed
memory. With distributed memory, each node has its own private memory, and these
memory spaces are not directly shared between nodes. Instead, explicit data exchanges
or communication between nodes are necessary whenever a task needs to access data
that is not in its local memory. This distributed memory model contrasts with shared
memory architectures, where several processors or cores access a single shared memory
space.

Distributed memory architectures work best with scenarios that involve limited data
sharing and a lot of computation with local data. Communication between nodes is
essential for coordination and synchronization in distributed memory systems, espe-
cially in large-scale distributed computing environments, such as HPC clusters and
grids. Efficient communication among nodes is made possible through message-passing
techniques, such as the Message Passing Interface (MPI), which provides a standardized
set of functions and libraries for transmitting data and coordinating processes across
distributed memory systems.

1.1 Challenges for HPC

As computational demands continue to grow, ensuring that HPC systems can scale
effectively to handle increasingly complex problems becomes an even bigger challenge.
A persistent problem in HPC is the issue of memory bottlenecks. While computational
speeds have advanced significantly over time, memory access times have not decreased
as quickly. This difference in performance between processors and memory can lead to
inefficiencies, as processors often spend a significant portion of their time waiting for
data to be fetched from memory.

Similarly, communication between processors or nodes within an HPC system can
introduce waiting times, leading to communication latency. Processors need to exchange
data to facilitate coordination and synchronization. The time spent on communication,
however, can easily become a limiting factor in overall system performance, especially
as the number of nodes working together grows. The increasing heterogeneity of HPC
architectures, including combinations of CPUs, GPUs, and specialized accelerators,
presents additional challenges. Writing and optimizing code to fully use the potential of
diverse hardware components while maintaining portability is difficult and ensuring
that code can effectively use parallelism, communicate, manage memory efficiently, and
adapt to different architectures is a significant challenge. This is especially true for
domain experts that extensive knowledge in their respective fields but lack expertise in
HPC. At the same time, HPC experts may not fully understand specific domains. As a

2



1.2 Approaches to Communication in HPC

result, creating HPC code that performs optimally for both specific domain problems
and diverse hardware becomes even more challenging. Bridging this gap between
domain and HPC experts is an another challenge in HPC.

The primary concern adressed in this thesis is the the problem of the complexity of
developing efficient code that implements communication in distributed systems.

1.2 Approaches to Communication in HPC

In HPC, often many nodes or processors must work together, and thus, communication
between processors or nodes is common. Reducing the time spent waiting for data
transfers is therefore crucial. This is especially true for distributed systems with longer
latencies.

Writing code that efficiently communicates in distributed systems is is often done
with the Message Passing Interface (MPI) as a library. Often, non-blocking communi-
cation is used in order to enable overlapping computation and communication to hide
communication latency. Although MPI is well-suited for this as it offers fine-grained
control over communication, it can be very complex to use. An alternative to MPI offer
Partitioned Global Address Space (PGAS) models [4].

PGAS is a programming model combining features of shared memory and distributed
memory models. In PGAS, the global address space is logically partitioned, with each
partition linked to a specific processing element or thread. PGAS models include Coarray
Fortran, Unified Parallel C [5], and similar frameworks.

1.2.1 Coarray Fortran

Coarray Fortran (CAF) [6] is a parallel programming extension of Fortran designed
to simplify the development of parallel and distributed applications. CAF offers an
array-based parallelism model, where data structures known as coarrays can be accessed
concurrently by different program units called images.

While CAF allows for parallel execution and communication between these images,
it does not offer native asynchronous communication capabilities. In CAF, commu-
nication typically occurs through explicit synchronization points, such as "sync all"
or "sync images," where data exchange between images is synchronized. To achieve
asynchronous communication in a CAF program, programmers need to implement their
own communication patterns using features provided by Fortran or by integrating CAF
with other libraries or tools supporting asynchronous communication (such as MPI).

In response to these limitations, CAF 2.0 was proposed in 2009 [7]. It aimed to
introduce a model for asynchronous operations like asynchronous copies and provide
the potential for latency hiding [8]. However, its adoption and implementation have
been very limited.

3



1 Introduction

1.2.2 Compiler-Based Approaches

Another set of approaches to automatically generate or optimize code to facilitate
developing efficient communication implementations involves using compilers and
compiler analysis techniques to optimize communication/computation overlap in MPI
code. The general idea of this approach is to give the compiler knowledge about
what MPI calls do so it can use that information to optimize and create non-blocking
communication [9]. This approach is also explored in [10] and [11], which investigate
various communication strategies and automation methods.

One notable example, [12] uses a compiler analysis technique known as the polyhedral
technique to automatically detect opportunities for communication/computation overlap.
This technique analyzes exact dependencies over multiple loop iterations, increasing the
overlap window between generating and using the data. It’s important to note, however,
that these techniques are not universally applicable and require specific conditions to
be effective. While [13] implemented a more automatic and realistic analysis approach
for scientific computing applications, it still relies on developer intervention to operate
effectively within complex scientific codes. Like several of the mentioned approaches, it
even needs manual implementation of automatically created optimization suggestions.

Developer guidance is required only to improve the accuracy of the analysis for large
scientific applications, because not all source code of these applications is available and
many low-level implementation details are impossible to fully automatically decipher
[17]. We currently manually apply the necessary program transformations, because code
need to be carefully moved across procedural boundaries

1.2.3 Dataflow Programming Models

Dataflow programming models are also commonly used to automatically optimize com-
munication to enable latency hiding in HPC. These models involve either programming
code directly in a dataflow model or translating existing code into such a model to
analyze and optimize it by overlapping communication and computation.

For instance, Bamboo [14] [15] in combination with Tarragon [16] automatically
translates source code that uses MPI into a version that overlaps computation and
communication to hide communication latency. This scheduling is done by a runtime
system based on a task-dependency graph abstraction. This approach does, however,
require programmer annotations to identify regions suitable for overlapping and efficient
communication reordering.

The same is true for the combination of Toucan [17] and Mate [18], a similar code
translation system with a model and runtime system for latency hiding. It is able to use
overdecomposition (using multiple MPI processes per processor core) without too much
additional overhead and uses this to hide latency by scheduling another process to do
computation on the same core while waiting for communication. It also requires adding
more annotations to indicate dependencies and independent regions.
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1.3 Goal of This Thesis

This thesis focuses on developing, implementing, and evaluating an automated approach
for generating code that implements the MPI communication used by the Coastal and
Regional Ocean COmmunity (CROCO) ocean model [19].

Ocean models are part of weather and climate modeling systems and have a high
need for computational performance and efficiency, leading to them commonly being
executed on big computing clusters. This causes a need for communication between
different nodes.

CROCO is an HPC application that is written in Fortran and can be executed in a
parallelized version that uses synchronous MPI messages to exchange data between
threads. These communication operations are implemented with manually written code.
The code is then assembled by the pre-processor into different code versions for different
use cases dependent on numerical scheme, modeled situation, hardware, and other
arguments. This makes writing and optimizing code in this context relatively difficult.
Additionally to the general complexity of writing efficient MPI code for such a model,
any communication code has to work in many different scenarios.

This thesis develops, presents, and evaluates a prototype that can automatically
analyze CROCO code that is parallelized using MPI and implement necessary commu-
nication as asynchronous MPI communication. This is done in two stages. The first
stage analyzes the code and its data dependencies to determine when communication is
necessary and identify a time window for asynchronous communication. The second
stage automatically generates code implementing this communication scheme with
non-blocking MPI operations.

This should happen as automatically as possible, without needing additional annota-
tions and with minimal additional user input.

While this thesis works on using CROCO’s BASIN test case as a proof of concept,
the approach needs to be general to work with different CROCO code for different use
cases.

1.4 Outline

This thesis is structured in the following way: Chapter 2 gives an overview of CROCO,
how it works, and how its current mode of communication looks. Chapter 3 presents
the code generation system PSyclone, which was used as one of the main tools for this
project, and Chapter 4 presents the general setup. Chapter 5 explains how necessary
halo exchanges are determined and Chapter 6 how the code is generated automatically.
Chapter 7 describes the evaluation process with 8 giving an overview of the results.
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2 CROCO

The Coastal and Regional Ocean COmmunity (CROCO) ocean model is an ocean modeling
system. As such it uses mathematical models to describe and simulate physical processes
in the ocean while placing a special focus on resolving very fine scales such as in coastal
areas and their interactions with larger-scale oceanic processes [19]. As outlined in
its documentation [19], CROCO describes ocean behavior within a complex, coupled
system of various interconnected elements such as the atmosphere, surface waves,
marine sediments, biogeochemistry and ecosystems.

The following section provides an overview of CROCO’s functionality and its relevance
within the context of the challenges discussed in Chapter 1.

2.1 Numerics

2.1.1 Primitive Equations

CROCO is able to simulate various properties and factors present in an ocean envi-
ronment. These variables include momentum, temperature, velocity, salinity and their
corresponding temporal tendencies.

To describe their behavior, computational fluid dynamics rely on the Navier-Stokes
equations, a highly complex set of equations, to model fluid behavior. For the sake
of simplification, a more manageable set of nonlinear partial differential equations,
referred to as the Primitive Equations, is used to provide an accurate approximation of
ocean behavior at large scale. These equations are simplifications of the Navier-Stokes
equations with the addition of a nonlinear equation of state. This equation describes how
the two so-called active tracers, temperature and salinity, affect water density, impacting
buoyancy and circulation in the ocean.

In this context, tracers are scalar variables tracking the movement and dispersion of
substances or properties within the water. There are two categories of tracers: active and
passive. Passive tracers observe the transport and mixing of specific properties such as
sediment concentrations without influencing fluid flow. Active tracers, like temperature
and salinity, actively affect fluid dynamics within the ocean.

The primitive equations are based on assumptions that are valid on large scales. These
assumptions cover aspects of fluid dynamics, such as the incompressibility hypothesis,
and take into account the shape of the Earth and oceans, such as the spherical earth
Approximation. By default, CROCO employs the primitive equations for simulations,
but it offers flexibility through configurable options. Disabling the SOLVE3D option
simplifies the model to only use a simplified subset of the primitive equations called
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2 CROCO

the shallow water equations. Moreover, CROCO can relax some of the assumptions
underlying the PE when necessary. For example, activating the non-Boussinesq mode
enables using the complete set of Navier-Stokes equations for high-resolution modeling.

This thesis will primarily focus on the default configuration, solving the primitive
equations.

2.1.2 Numerical Model

This section gives a fundamental overview of CROCO’s underlying numerical model.
CROCO includes many additional features that will not be discussed here.

CROCO is a split-explicit, free-surface model. A free-surface model represents the
ocean’s dynamic surface as opposed to a fixed, rigid lid [20]. This can capture real-
world changes caused by things like waves, tides and atmospheric interactions. The
"split-explicit" aspect refers to CROCO’s time-splitting algorithm, which is derived from
the older Regional Ocen Model (ROMS) [21] and described in [20]. Their reasoning for
using a time-splitting approach will be described in the following section.

Time Splitting

CROCO splits time-stepping into two different modes, a faster barotropic and a slower
barotropic mode working on different time scales, needed to accurately model two
different kinds of water flows.

The terms "barotropic" and "baroclinic" are used to categorize the distribution of water
density and pressure in the ocean [22]. Barotropic refers to conditions with uniform
water density across depths. Consequently, barotropic flows are flows that are mainly
caused by pressure differentials. The horizontal velocity of a barotropic flow is only
a function of depth-independent variables, such as latitude and longitude. Baroclinic
flows in contrast are mostly driven by variations in water density with depth. Barotropic
flows represent fast, small-scale motions of the ocean that are primarily driven by
pressure gradients, such as tidess. On the other hand, the baroclinic mode represents
slow, large-scale motions of the ocean that are driven by density variations, such as the
thermohaline circulation, a global oceanic circulation pattern driven by temperature and
salinity variations [22].

These differences mean that both flows act on different time scales, with the barotropic
mode having a much shorter time scale than the baroclinic mode and therefore needing
smaller time steps. If the same time step size were used for both modes, the time step
would be limited by the barotropic mode, which would result in a very small time step
size for the baroclinic mode. This would make the simulation computationally expensive
and inefficient.

Therefore, the model uses a split-explicit time-stepping algorithm that treats the
barotropic and baroclinic modes separately and uses different time step sizes for each
mode. It uses multiple short time steps in the barotropic mode for surface elevation and

8



2.2 Grid and Coordinates

barotropic momentum and employs a larger time step for active tracers (temperature,
salinity) and baroclinic momentum [20].

Time Stepping

Time-discretization in CROCO uses a third-order predictor-corrector scheme (LFAM3)
from [20]. The barotropic mode is advanced using a forward-backward time-stepping
algorithm (Adams Moulton, AM3), while the baroclinic mode is advanced using a
leapfrog (LF) time-stepping algorithm.

Barotropic results are calculated for many fast barotropic time steps during one slow
baroclinic time step. These values are then averaged over the steps (using a filter for
a weighted averaging function) and the results feed back into the 3D momenta. The
averaging is needed to prevent temporal aliasing. What will be most important later is
that every step in the loop consists of one slow step and a loop of n_fast fast steps.

Time steps in CROCO are subdivided into four parts: step2d (the fast barotropic step)
and three parts of the slow baroclinic step, pre_step3d, step3d_uv and step3d_t like shown
in the following commented code extract from [19]:

call prestep3d_thread() ! Predictor step for 3D momentum and tracers

call step2d_thread() ! Barotropic mode [occurs in an additional loop]

call step3d_uv_thread() ! Corrector step for momentum

call step3d_t_thread() ! Corrector step for tracers"

In every time step, pre_step3d is called first as the predictor step for momentum and
tracers. Next, the fast, barotropic step which is implemented in step2d is repeated in a
loop n_fast times to do its job. After that step3d_t and step3d_uv implement the corrector
steps for 3D momentum and tracers.

2.2 Grid and Coordinates

CROCO utilizes a grid-based method to discretize space for numerical computations.
This grid is based on a curvilinear horizontal coordinate system rather than a conven-
tional Cartesian coordinate system. The two dimensional part of the CROCO grid can
be viewed as a grid with coordinates awith the primary xi and eta axes representing
latitude and longitude, respectively. The third, vertical, spatial dimension is organized
in columns extending vertically over the grid cells, allowing for modelling of various
depths and heights in the ocean.

2.2.1 Staggered Grid

CROCO uses a staggered grid which means different properties are evaluated at different
locations within a cell. Scalar variables such as density, sea surface height (or free surface
height), temperature and other tracers are defined at the center of a cell, while velocities
and momentums are defined at the boundaries (or faces) between two cells, describing
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2 CROCO

j

i

u(i, j)

ρ(i, j)

v(i, j)

Figure 2.1: A staggered grid. Scalar variables are defined in a cell’s center, velocities and
momentum in the middle of its eastern or northern border, dependent on
the direction. The ρ, u and v points for the grid cell (i, j) are marked in blue.

the flow from one cell to the other. Figure 2.1 depicts the staggered grid with the
described locations. The central location will be referred to as the ρ-point, while the
location of the zonal (east-west-direction) flow will be referred to as the u-point, and
the location of the meridional (north-south-direction) flow will be referred to as the
v-point. Additionally, there exist a ψ-point in the corners of the cells and a w-point that
is vertically staggered, which will not be relevant here.

At the edges of the simulation space, there are boundaries, either physical ones or for
example periodic boundary conditions.

2.2.2 Stencils and Kernels

The computations that CROCO performs to model the ocean can then be seen as
stencil computations on this grid. This means that each cell’s value is calculated as a
combination of the values of other cells in its neighborhood. The stencil that is applied
contains information about which cells in the neighborhood are being evaluated and
how they are contributing. An example of this can be seen in Figure 2.2. To compute
each cell, the stencil is moved across the grid and applied to each cell. In code, this is
implemented with iterative stencil loops which are loops iterating over the space. The
code inside the loops describing and implementing the stencil computation is called a
kernel (see Figure 2.2 for an example kernel).

10



X X

Array A Array B

B(i,j) = A(i,j) + A(i+1,j) + A(i-1,j) + A(i,j+1) + A(i,j-1)

Figure 2.2: Applying the blue five-point-stencil to array A as shown means the value of
the cell marked with X in array B is computed using the values of the cells
under its five-point-stencil on A (shown in blue). This calculation is done for
each cell in B by shifting the stencil over the array.
The formula below the grids shows a code example for a very simple kernel
that uses a five-point-stencil.
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Figure 2.3: In this example, the whole grid is divided into 9 domains. Each domain
has an additional copy of the cells belonging to its neighbor that are next
to its boundary, called halo cells (here only shown for subdomain P4). A
subdomain has two halo layers consisting of eight regions, each belonging
to a neighbor in a different direction. Thus, instead of only storing its own
5x5 values, a process stores the 9x9 values of the whole area consisting of its
interior region plus the halo.



2.3 Parallelization

2.3 Parallelization

The described calculation process is very computationally intensive. Therefore, a
high degree of parallelization, which distributes the computational load over several
processors, can be very advantageous. This is especially true for the modeling of
large areas and for the resolution of small scales. CROCO provides parallelization
options using either shared memory with OpenMP or distributed memory with MPI.
Both strategies work on the basis of a domain decomposition in which the spatial
domain is divided into several sub-domains along both the xi axis and the eta axis. In
addition, the working arrays are divided into smaller subarrays, each containing only
the area that corresponds to a subdomain. This allows parts of the code to be executed
in parallel, with different processors working on different subdomains concurrently.
For very large simulations, it is often necessary to use more than one compute node.
Therefore, the Message Passing Interface (MPI) instead of OpenMP is required as
CROCO’s parallelizing strategy.

2.3.1 Parallelization with MPI

With distributed memory, a processor has easy access only to the working arrays of its
own subdomains, which are stored in its local memory. The stencil calculation for a cell
is dependent on the data of neighboring cells. For most cells, these neighbors are part of
the same subdomains and their data is therefore locally available. For cells located at the
boundaries of a subdomain, neighboring cells may belong to different subdomains that
have been assigned to different MPI processes on different processors. Consequently,
the necessary data is not in local memory, as it belongs to a different process. To access
it, these two processes must communicate using MPI messages. Depending on the
numerical scheme, CROCO’s halos can have a width of two or three layers of cells.

To minimize the number of communication operations for accessing neighboring cell
values near subdomain borders, each computational process maintains a local copy of
cells directly bordering its subdomain but outside of it. These cells are known as halo
or ghost cells. Their sole purpose is to provide input values for stencil operations that
are centered on cells within the interior of a subdomain. An illustration of such a halo
is provided in Figure 2.3. As computation progresses, these cells will contain newly
computed values within one subdomain, while the halo cells in adjacent subdomains
will still retain their old values. To ensure consistency in the simulation, it becomes
necessary to regularly update the values of these halo cells. This is done using halo
exchanges, where each process sends the values of some of its cells to other processes,
which store this data in their halo cells.

When utilizing MPI for parallelization, halo exchanges account for the majority of
communication between processes. Consequently, an efficient implementation of halo
exchanges is critical for achieving good runtimes.
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2 CROCO

2.4 Halo Exchanges in CROCO

This section describes how halo exchanges are implemented in CROCO with the use of
MPI.

2.4.1 Halo Setup

For halo exchanges in CROCO, a process with its corresponding subdomain needs to
exchange data with the eight cells in its 8-neighborhood (Moore neighborhood) that
each own some of the cells in its halo, four on the sides (North, South, East and West)
and four on the corners (North East, North West, South East and South West). Figure 2.4
shows the exchange for one process and three selected neighbors.

2.4.2 Synchronous Halo Exchanges

CROCO implements the halo exchanges in a synchronous fashion with two-sided,
blocking MPI operations. Each process exchanges the data using separate send and
receive operations for each communication direction. This is implemented in the exchange
and MessPass subroutines in the following waylike shown in Figure 2.5:

Communication is structured in a way so that it always happens between a pair of
neighbors exchanging data in both directions before pairing up with a new neighbor.
More details in this additional level of synchronization can be found in Figure 2.6.

Before transmitting data, each of the eight directional segments of the halo region is
copied into a temporary one-dimensional send buffer, so it can be accessed contiguously
(see Figure 2.7). Next, the process proceeds to initiate receiving data from its neighbor
into a temporary receive buffer (equivalent to the send buffer) with a non-blocking
MPI_IRECV call. This asynchronous operation allows the process to continue its tasks
without waiting for the data transfer to finish. Simultaneously, while the receive
operation is still operating, the process sends its data using a blocking MPI_SEND call.
Using a blocking send means that this operation will hold until the data transmission
is complete. After completing the send, it uses an MPI_WAIT to wait until the receive
operation terminates which means that it has received data for all its halos. Then it
copies the data from the receive buffer back to the corresponding halo cells. Example
code for a halo exchange in one direction is provided in Figure 2.8.

Subdomains next to the border of the whole area do (dependent on the boundary
conditions) not perform a halo exchange in directions where no neighbor exists. The
information if a neighbor in a direction exists, if it is used for halo exchanges and
what its rank (used as source and destination in the MPI calls) is, is stored in a row of
variables explained in Table 2.1.

2.5 Compilation and Build Process

This section provides an overview of CROCO’s compilation and build process.

14
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Figure 2.4: P4 and its halo exchanges with its neighbors in the South, East and South
East direction. It receives updated values for its halo cells (marked with
x, o and · and sends current data for its own cells to the corresponding
neighbors.)



SUBROUTINE xyz

...

perform computations, change X

...

CALL set_boundary_conditions(X)

CALL exchange_tile(X)

...

END SUBROUTINE

SUBROUTINE exchange_tile(X)

set_periodic_boundary_boundary_conditions(X)

CALL MessPass_tile(X)

END SUBROUTINE

SUBROUTINE MessPass_tile(X)

DO for all neighbors:

copy halo values to buffer

CALL MPI_IRECV

CALL MPI_SEND

ENDDO

DO for all neighbors

wait for irecv to terminate

copy recv buffer to halo

ENDDO

END SUBROUTINE

Figure 2.5: Pseudocode for synchronous communication scheme in original CROCO
code.
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Figure 2.6: Additional synchronization level in CROCO’s halo exchanges (only shown
for the East / West direction). Every process pairs up with one neighbor and
finishes communcation with that neighbor before communicating with the
neighbor on the other side. In this example, first both exchanges marked
with 1 happen (concurrently), the exchange marked with 2 only happens
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Figure 2.7: Serialization of data for a halo exchange to the south. The data in the logical
array locations in green is arranged in memory in non-contiguous memory
cells as shown on the top right. After copying the data to the buffer it is
stored in continguous memory cells as shown on the bottom right.



...

! copy halo cell data to send buffer

DO j=jmin,jmax

DO ipts=1,Npts

jbuf_sndW(j-jmin+(ipts-1)*jshft)=A(ipts,j)

ENDDO

ENDDO

! start non-blocking receive from western neighbor

CALL MPI_IRECV (jbuf_revW, jsize, MPI_DOUBLE_PRECISION,

p_W, 2, MPI_COMM_WORLD, req(1), ierr)

! do blocking send to western neighbor

CALL MPI_SEND (jbuf_sndW, jsize, MPI_DOUBLE_PRECISION,

p_W, 1, MPI_COMM_WORLD, ierr)

...

! communicate with other neighbors

...

! wait for completion of receive

CALL MPI_WAIT (req(1),status(1,1),ierr)

! copy received data into corresponding halo cells

DO j=jmin,jmax

DO ipts=1,Npts

A(ipts-Npts,j)=jbuf_revW(j-jmin+(ipts-1)*jshft)

ENDDO

ENDDO

...

Figure 2.8: Code implementing the original halo exchange of a process with its western
neighbor. Extract from subroutine MessPass2D_tile.



2.5 Compilation and Build Process

Table 2.1: Variables that are used in CROCO to control halo exchanges. This table
provides examples for two directions.

Variable Name Content Notes

p_n MPI rank of northern neighbor.

north_inter

Variable has northern neighbor
or
the simulation uses periodic
boundary conditions.

north_inter2

Variable has northern neighbor
for halo exchange
(meaning the corresponding
neighbor tile is not a land tile
associated with MPI_noland).

If MPI_noland == false
north_inter and north_inter2
are identical.

p_sw MPI rank of north eastern neighbor.

corner_sw

Variable has south western neighbor
for halo exchange
and this variable is not a land tile
associated with MPI_noland.

Equivalent to e.g. north_inter2
for the south east corner.
Corners do not have variables
equivalent to e.g. north_inter.

CROCO primarily uses Fortran, with .F files for Fortran 77 code and .F90 files for
Fortran 90 code, supplemented by .h header files. CROCO utilizes a C preprocessor with
preprocessing keys to help simplify code generation and compilation. This approach
provides considerable flexibility. Users can select different features, scenarios and
numerical schemes to automatically generate code tailored to specific use cases.

They can configure parameters and settings in param.h and cppdefs.h using C
preprocessor directives. The CROCO code is then preprocessed by the preprocessor,
which selectively includes, replaces and inserts code segments based on the specified
flags and directives. This creates a customized code version for the selected keys.
CROCO’s input options are distributed over several code files. These inputs include
grid settings, options for parallelization, file paths, input and output specifications,
time-stepping parameters, parameterizations, boundary conditions, numerical schemes,
model configurations and additional variables [19]. These inputs are used to the design
of the code to meet the specific simulation criteria.

The jobcomp script manages the compilation process, providing configurations for
paths, compilers, libraries and other important settings.
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2 CROCO

2.6 Test cases

CROCO offers a range of test cases. These test cases use various options, numerical
methods, scenarios, and inputs, enabling users to test CROCO on a diverse set of tasks.
One example is the BASIN test case, which is used as the test case in this thesis. The
CROCO manual [19] characterizes the BASIN test case as follows:

This is a rectangular, flat-bottomed basin with double-gyre wind forcing. It
produces a western boundary current flowing into a central Gulf Stream
which goes unstable and generates eddies if resolution is increased.

The parameters that are relevant here are the following: It is a rectangular water basin
with solid physical boundaries on all four sides, not using periodic boundary conditions.
For time-stepping it uses CROCO’s default model for solving the Primitive Equations
that was described in Section 2.1.2. Most additional model options are disabled apart
from the ones described above. MPI and OpenMP are both turned off by default but
MPI will be enabled later on.

2.7 Automatic Code Generation for Communication

This section describes why automatically being able to generate code implementing
efficient communication would be very beneficial in the case of CROCO.

2.7.1 Parallelization and Performance

CROCO uses the parallelization method described earlier, employing spatial decom-
position to partition the computational space into subdomains that can be assigned to
multiple processor cores to be processed concurrently. This approach uses a high degree
of parallelism, which is essential for weather and climate simulations. These simulations
frequently run on many nodes concurrently to enable quick weather predictions and
efficient long-term climate modeling without excessive computational time.

2.7.2 Communication

The need for high performance in cases like these makes it necessary to use distributed
systems like clusters for some applications. This makes communication between nodes
necessary, causing - dependent on the specific case - additional communication latency
which decreases performance. The frequent need for halo exchanges necessitates efficient
communication strategies. CROCO’s halo exchanges are implemented as synchronous
MPI communication as explained in Section 2.3.1. The locations of these halo exchanges
are determined manually and are part of CROCO’s code, and only slightly modified by
the preprocessor.

This leaves room to optimize both the implementation and the placement of CROCO’s
halo exchanges in order to decrease (or hide) communication latency.

20



2.7 Automatic Code Generation for Communication

2.7.3 Automatic Code Generation

As seen, CROCO has the ability to automatically generate customized code for specific
use cases. This makes manual optimization challenging due to the large number of
possible code variations. Automated detection of communication needs, combined with
code generation, simplifies and facilitates this process, allowing for optimization tailored
to each case.

Both automatically optimizing existing communication schemes for higher efficiency
and automatically generating code that newly implements communication are beneficial
here.
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3 PSyclone

This chapter gives a short overview of PSyclone, a code generation system used in
this project for parsing and analyzing CROCO code and modifying it to implement
communication.

PSyclone is a system for code generation with the aim to support domain-specific
languages (DSLs) for finite element, volume and difference codes [23]. With its additional
ability to support existing codes, this makes it a good choice for the parsing, analyzing
and modifying CROCO code.

The following sections present an overview of PSyclone’s basic structure and some of
its functionalities as described in its documentation [23].

3.1 PSyKAl Separation of Concerns

The core concept within PSyclone is the "PSyKAl" separation of concerns, which divides
the code into three distinct layers: the Parallelization System (PSy) layer, Kernel layer,
and Algorithm layer.

The Algorithm layer is where the PSycĺone users define their algorithms through calls
to kernel routines and built-in operations, working with entire fields as their logical
operation units. The Kernel layer, on the other hand, determines the implementation of
these kernels, focusing on local fields (e.g., a column or a set of cells). Kernels in this
layer operate on raw Fortran arrays, allowing for compiler optimization. Neither the
Algorithm nor the Kernel layer allow any parallelization directives, as this is the domain
of the PSy layer in between them. The PSy layer connects Algorithm and Kernel layers,
managing arguments, invoking kernels, executing operations, and handling distributed
memory operations such as halo exchanges.

Furthermore, PSyclone offers an automatic code generation feature for the PSy layer.
This simplifies the optimization process and reduces the likelihood of errors, making it
more efficient and accessible.

3.2 Nemo API

PSyclone also supports working with existing code not following the presented sepa-
ration of concerns. This is done with an API for an ocean model called Nemo nemo.
To make Nemo code fit with PSyclone’s three layers, it is viewed as PSy layer code
with inlined kernels and without an algorithm layer. The existing PSy layer code is
converted into a higher-level representation by applying rules based on the Nemo coding
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3 PSyclone

conventions. PSyclone can then process and modify that representation and generate
new code. Although the Nemo API was developed for this specific ocean model, it can
also be used with CROCO code with minor modifications. (see Chapter 4).

3.3 PSyIR representation

To be processed with PSyclone, existing code like Nemo is parsed and transformed into
an abstracted representation called PSyclone Internal Representation (PSyIR). Apart
from being created by parsing existing code like with the Nemo API, this representation
can also be built from scratch. PSyIR representations exist for both kernel and PSy
layers. As Nemo code is seen as PSy layer code with inlined kernels, much of it uses
kernel-layer PSyIR representation.

PSyclone uses different classes to represent code elements, referring to them as
PSyIR nodes. Examples include Loops, References, ArrayReferences, Literals, Calls, or
Operations. These nodes can be organized in a tree known as the PSyIR tree, which
captures the entire structure of the code. Additional methods are available to modify
and traverse this tree and to create new PSyIR nodes.

PSyclone provides a Python script called psyclone that can be used to parse existing
CROCO code into an analogous PSyIR representation. PSyclone also includes transfor-
mation scripts that can be applied to the PSyIR of a code file and change it. Afterwards
script can be used to generate new code based on the altered PSyIR. It also allows to
write new transformation scripts

3.4 PSyclone Use in This Project

In this project PSyclone’s Nemo API is used to parse CROCO code into an analogous
PSyIR representation using the provided psyclone script. This representation can then be
analyzed to find out when communication needs to happen. Then a transformation can
be used to add new communication operations and removes old ones and generate the
modified code.
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4 Setup

As stated in Chapter 1 the approach represented in this thesis has two parts: First,
code analysis and the identification of necessary communication options, and then code
generation. This section describes how these two stages are embedded in the context of
CROCO, its build pipeline, and PSyclone and Poseidon as important tools.

4.1 General Approach

The general approach is the following: First, CROCO code that uses MPI is built and
compiled by adding the # define MPI directive as an additional parameter. The result
of that build contains code for managing subdomains, subprocesses, and setup and
initialization for using MPI. It is, therefore, used as the basis for generating a code
version with optimized communication and also using two-sided MPI communication.
For this, the original synchronous halo exchanges need to be removed while newly
generated asynchronous halo exchanges are inserted into the code. Asynchronous
communication is used with the goal of overlapping computation and communication,
thus hiding communication latency.

PSyclone’s psyclone script can, however, only parse and analyze individual files. For
a global analysis of variable dependencies that is needed here, this is not enough. This
prototype, therefore, uses a tool called Poseidon for global analysis.

During this analysis, kernels and stencils are extracted from the code to analyze
data dependencies and identify when halo exchanges of which variables are necessary.
Then, this data is used to determine optimal locations for communication operations.
Finally, PSyclone is used to modify the original code by inserting code in those locations
implementing an asynchronous communication scheme.

4.2 Poseidon

Poseidon is a tool that integrates PSyclone function to be easily usable to do global
analysis on CROCO code. It provides a build pipeline that can be used to build CROCO
code and modify it based on both specific arguments and code analysis using PSyclone.
Additionally, it contains functionalities for kernel extraction, basic dependency, and
stencil analysis, benchmarking, and plotting-
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4.2.1 Poseidon Pre-parser Pipeline

Poseidon’s pre-parser and its associated build pipeline provide tools for an automated
build of CROCO code, executing PSyclone transformations on that code, global analysis,
testing, and benchmarking. Additionally, it offers patching capabilities to modify
configuration and code files before the build process.

Configuration parameters are specified in a config.json file, containing options like
file paths and the PSyclone transformations to be applied to these files, the specific test
case, or the chosen parallelization method.

This pipeline involves several steps: Before the actual build process, the CROCO
code is modified. These modifications include both changes to the input files (such as
choosing a test case or adjusting the number of steps) and minor changes to CROCO’s
build process and code. One such change is creating a file specifying which of the code
files should be processed by transformation scripts (as taken from the configuration file)
and adding code to the jobcomp file that adds this processing step to CROCO’s build
process.

These transformations are automatically executed between pre-processing and com-
pilation. The files that need global analysis (as specified in the configuration file) are
then parsed with the poseidon-pre-parser, conducting global analysis using and saving
intermediate results. This process involves parsing the code, extracting kernels, con-
ducting basic dependency analysis, building an ordered list of kernels, and generating
temporary results. Afterward, a second build of CROCO is executed, using the PSyclone
transformations once more and utilizing the saved results to generate new code. After
that, the simulation can be executed to generate results.

This entire pipeline is executed through a Python script named bench, which also
supports automated testing, benchmarking, and plotting.

4.2.2 Patching

Additionally, Poseidon has some more patching abilities that make it possible to change
arguments in configuration and Makefiles to adapt the build process and to make
additional smaller changes to CROCO’s code before the build process.

There are two ways in which the patching is done. The first one uses git’s patching
abilities [24], replacing specified lines in specified files with provided alternatives. A list
of these patches can be given in a configuration file and will automatically be applied
before the build process. Some patches are provided that concern Poseidon’s build
pipeline and minor fixes to make CROCO code compatible with PSyclone. This way of
patching is also used to change the input parameters of the test case for using different
grid dimensions.

The other way uses Python code to make changes. Poseidon provides a set of functions
that are able to replace given strings or lines of code in designated files. This works
similarly to the first way but allows for more flexibility regarding the inputs. This is
used for making changes like enabling MPI with # define MPI or adjusting the number
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of time steps.
The patching functions are also used for the fixes in Section 4.3.1 (using the git patches)

and Section 4.3.2 (using Python code).

Patches

4.3 Patching Process

To allow PSyclone to parse the CROCO code, some additional adaptations were made
using the patching process described in Section 4.2.2. Section 4.3.1 describes a patch
that was made using git.

4.3.1 Step3d Patch

Because of some limitations in PSyclone, certain array shapes used in CROCO cannot be
parsed correctly. For example

REAL :: A(- 1 : Lm + 2 + padd_X, - 1 : Mm + 2 + padd_E), gamma

is parsed to

a: DataSymbol<UnknownFortranType('REAL :: A(- 1 : Lm + 2 + padd_X, - 1 : 

Mm + 2 + padd_E),  gamma'), Local>

adding multiple variable names into one DataSymbol and its UnknownFortranType.
This causes problems as it hides variables like gamma from PSyclone and fparser. A
following declaration of the therefore unknown variable as a parameter

parameter (gamma = 1)

will lead to an error. Patching this for all parameters with this problem in all files is
necessary. This is done with a patch that gives all scalar parameters their own variable
definition, changing, for example

real A(GLOBAL_2D_Array), gamma

parameter (gamma = 1)

to

real A(GLOBAL_2D_Array)

real gamma

parameter (gamma = 1)

This allows PSyclone to correctly parse those files.
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4.3.2 MPI Version Patch

Because of a bug in the version of fparser that is part of the PSyclone version used for
this project, parsing code files with include statements was not possible. This made it
necessary to switch from using include 'mpif.h' in the original CROCO code to using
the more modern use mpi as it’s recommended in the official MPI standard [25]. To do
this, a patching function in the pre-processing stage (after the pre-processor) searches
all files for subroutines containing the line include 'mpif.h'. This line is then deleted,
and instead, use mpi is inserted in a line directly before the implicit none statement.

Changing this makes it also necessary to modify some MPI calls in the existing
CROCO code that work with include 'mpif.h' but cause errors with use mpi. This
is fixed by additional patches adding a missing variable ierror in the MPI_abort calls
where there is none and modifying the status variable in several MPI_wait calls to correct
its data type.
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5 Implementation I - Analyzing Stencils and
Scheduling Exchanges

This section describes the approach to first part of the problem, determining when halo
exchanges of which variables are necessary.

5.1 Basic Approach

First, PSyclone is used to parse all necessary code files and construct the PSyIR tree.
This tree is then traversed to extract a list of kernels (in execution order) with their
corresponding loops and stencils. Afterwards, these kernels and stencils are used to
determine data dependencies and determine when a halo exchange is necessary and find
optimal time windows for asynchronous halo exchanges. Later, code will be generated
and inserted at these determined locations to implement the halo exchanges.

5.2 Kernels

It can be assumed that in the CROCO code, all relevant computations (for this task) are
done using kernels implementing stencil computations. These kernels are nested inside
a set of kernel loops that iterate over the space. In these loops, CROCO uses the loop
variables i and j for iteration over the xi- and eta-dimensions of the two-dimensional
space of a subdomain. Both, loops that iterate over different dimensions (e.g. time) and
loops that iterate over parts of these dimensions only use other indices (for example ipts
for the iterator operating only on the halo part of the i-dimension).

The kernels and kernel loops can be nested with other loops, for example iterating
over the vertical space, time or tracers. A kernel and all loops around it can be seen as
one kernel block.

5.2.1 Kernel Extraction

The process of parsing, traversing and extracting the kernels was adopted from the way
the poseidon-pre-parser handles it with very minor changes. The kernels are extracted
from code by traversing the routines making up the PSyIR tree of the CROCO code.
All nests of loops in a routine are tested whether they contain loops using each of the
control variables i and j and therefore represent a kernel block. If yes, the corresponding
kernel is extracted. Every extracted kernel is represented by a kernel object that is saved
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in a list of kernels in execution order. To store information on its kernel loops, each
kernel has the PSyclone node representing the outermost loop of its kernel block as an
attribute. Even though some of the kernels are executed multiple times in the call tree,
there is only one kernel object instance created per kernel. This object can be inserted
into the ordered kernel list multiple times if necessary.

Each kernel stores a list of variables and assignments, mapping the left hand side (lhs)
result of each assignment to its right hand side (rhs) arguments.

The following example is a simplified code extract from step2d_fb_tile:

DO j=jstrv-1,jend

DO i=istru-1,iend

zeta_new(i,j)=zeta(i,j,kstp) + dtfast*pm(i,j)*pn(i,j)*(duon(i,j)-

duon(i+1,j)+dvom(i,j)-dvom(i,j+1))

ENDDO

ENDDO

This code of a kernel block contains a kernel inside of the two kernel loops. The
corresponding kernel object has the following attributes:

• The outer loop, in this case the j-loop (as a PSyIR Loop) as the root of the whole
kernel block. This loop does also contain the PSyIR Nodes of all loops nested
within it.

• The lhs result (zeta_new(i, j)) as a PSyIr Reference together with all its rhs argu-
ments as PSyIR Nodes (References, Literals or Operations):

– zeta(i, j, kstp)

– dtfast

– pm(i, j)

– pn(i, j)

– duon(i, j)

– duon(i + 1, j)

– dvom(i, j)

– dvom(i, j + 1)

Kernel Preprocessing

Information on stencils and data dependencies will later be stored and traced through
the code with the help of the array names as keys. Because of this, the indices and
variables are further pre-processed in the following way: For all variables that are
used for array indexing it is tested whether they are the control variable of one of the
loops in the kernel block. If they are not, this information is stored by appending the
variable name to the array name. In the given example, the i and j variables are the
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control variables of the two kernel loops. kstp, however does not correspond to any loop.
Therefore zeta(i, j, kstp) is stored with the name zeta__kstp.

This is done to differentiate between accessing slices of a dimension and the full
dimension with the same index. In the following (made up) example there are two
kernel blocks with identical kernels both having the same array reference on zeta as the
lhs result.

! This accesses only one slice of the array

kstp = 1

DO i=...

DO j=...

! stored with the name zeta__kstp

zeta(i,j,kstp) = ...

ENDDO

ENDDO

! This loops over the third dimension

DO kstp=...

DO i=...

DO j=...

! stored with the name zeta

zeta(i,j,kstp) = ...

ENDDO

ENDDO

ENDDO

But since they are used within different loops they access different parts of the array
and are therefore stored using different names.

Exception: Tracer Loops

CROCO uses two different types of kernels to operate on the tracer space (see
Figure 5.1). While some of them are located within a regular set of nested loops, other
kernel blocks are located in one subroutine that is called from within an additional loop
iterating over the tracers, in another subroutine. In the second case, the outer loop in
another subroutine is seen as part of the kernel block to make the representation of both
types of kernels consistent. For this, every kernel gets a base_node attribute that is the
PSyclone PSyIR representation of the outermost loop iterating over a variable that is
used as an array index inside the kernel. For the kernels operating on the tracer space
this means, the base node is always the outermost for-loop of a kernel, no matter how it
is called.
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DO itrc=1,nt ! base node of the kernel

DO k=1,n

DO j=jstr,jend

DO i=max(istr-1,1),min(iend+2,lm+1)

fx(i,j)=(t(i,j,k,nadv,itrc)-t(i-1,j,k,nadv,itrc))

ENDDO

ENDDO

if (istr.eq.1) then

DO j=jstr,jend

fx(0,j)=fx(1,j)

ENDDO

endif

if (iend.eq.lm) then

DO j=jstr,jend

fx(lm+2,j)=fx(lm+1,j)

ENDDO

endif

...

DO itrc=1,nt ! base node of kernel

call t3dmix_tile(istr,iend,jstr,jend, itrc, ...)

ENDDO

subroutine t3dmix_tile (istr,iend,jstr,jend, itrc, ...)

...

DO k=1,n ! rest of the kernel

...

DO j=jstr,jend

DO i=istr,iend+1

fx(i,j)=0.5D0*diff3u(i,j)*pmon_u(i,j)*(hz(i,j,k)+hz(i-1,j,k))*(t(i,

j,k,nrhs,itrc)-t(i-1,j,k,nrhs,itrc))

ENDDO

ENDDO

...

Figure 5.1: Two different types of kernels containing itrc. On the top there is a simple
kernel, on the bottom, the first kernel loop (the base node) is located in a
different subroutine than the rest of the kernel.



5.2 Kernels

5.2.2 Kernel Connectors

Kernel connectors (or connector kernels) implement passing arrays as arguments for
subroutine calls. Many of the subroutine calls in CROCO have arrays as dummy
arguments. Most of them pass array variables to other subroutines using the scratch files
A2d and A3d (for two- and three-dimensional arrays respectively), but other arguments
are also used.

In this way, arrays and the data dependencies associated with them get passed to other
routines, modified there and returned. As stated before, tracing these dependencies is
done using the array names as keys. Using a variable in a function call usually leads to
this variable having a different name in the caller and callee subroutines. Without any
measures to link both names for the argument together this would mean information on
the dependencies getting lost at the start and end of subroutine calls.

To link the names of the dummy arguments of the subroutine that is called to the
corresponding names in the caller, a call is represented by a connector kernel. Connector
kernels are equivalent to simply assigning all values of one array to a second one. This
is not only used for representing passing arguments in routine calls but will be used for
modifying time indices later. An example for a subroutine call and its corresponding
connector kernels is shown in Figure 5.2.

Subroutine calls are implemented by inserting a start connector before the kernels of a
subroutine and an end connector afterwards to link changes in the input arrays during
the subroutine execution back to the original arrays.

Connector kernels are also used to represent changing time indices. Figure 5.3 shows
an example for this. The timestep reassignment represented by the code on the left
(a simplified version of the one used in CROCO in step2d) has an effect equivalent to
that of the code on the right side (for all affected arrays). Therefore the changes to
variables used as time indices, which are happening outside of a kernel, are represented
by connector kernels containing assignments like the ones shown on the right side of
Figure 5.3.

Additionally, some minor changes need to be made to some of the kernels.

5.2.3 Changes to Loop Bounds

The original CROCO code does not iterate over the whole array with all its halo layers in
each kernel loop. In some kernel loops, the values of some of the halo cells are not used
(e.g. directly before halo exchanges). This causes incorrect results when determining
the necessary halo exchanges as the presented approach assumes that all kernels are
executed over the entirety of an array. This is solved by extending some kernel loop
bounds to cover a larger area. This change is made by modifying the loops’ PSyIR
representation to later generate code with the new loop bounds (see Figure 5.4).
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subroutine step2d(tile)

...

call step2d_fb_tile(istr, iend, jstr, jend, a2d(1,1,trd), a2d(1,2,trd),

a2d(1,3,trd), a2d(1,4,trd), a2d(1,5,trd), a2d(1,6,trd), a2d(1,7,trd),

a2d(1,8,trd), a2d(1,9,trd), a2d(1,10,trd), a2d(1,11,trd), a2d(1,12,

trd), a2d(1,13,trd))

return

end subroutine step2d

subroutine step2d_fb_tile(istr, iend, jstr, jend, zeta_new, dnew, rubar,

rvbar, drhs, ufx, ufe, vfx, vfe, urhs, vrhs, duon, dvom)

...

! start connector

DO i= ! whole xi-domain

DO j = ! whole eta-domain

zeta_new(i, j) = a2d(1,1,trd, i, j)

dnew(i, j) = a2d(1,2,trd, i, j)

...

ENDDO

ENDDO

! end connector

DO i= ! whole xi-domain

DO j = ! whole eta-domain

a2d(1,1,trd, i, j) = zeta_new(i, j)

a2d(1,2,trd, i, j) = dnew(i, j)

...

ENDDO

ENDDO

Figure 5.2: Top: Subroutine step2d_FB_tile is called by step2d with multiple dummy
arguments that have different names in both subroutines (e.g. a2d(1,1,trd) vs.
zeta_new).
Bottom: The code for two connectors representing the changes in array names
associated with the call. The start connector is inserted before the first kernel
in step2d_FB_tile, the end connector after the last one to return the results in
the arrays.



kold = kbak

kbak = kstp

kstp = knew

knew = kstp + 1

DO i= ! whole xi-domain

DO j = ! whole eta-domain

zeta(i, j, kold) = zeta(i, j, kbak) ! kold=kbak

zeta(i, j, kbak) = zeta(i, j, kstp) ! kbak=kstp

zeta(i, j, kstp) = zeta(i, j, knew) ! kstp=knew

! knew=kstp+1 not necessary as knew is first

overwritten

ENDDO

ENDDO

Figure 5.3: A time step reassignment like the on the left (note: this is manually written
code giving a simplified version of a time step reassignment occuring in
CROCO) can be implemented using a connector kernel representing the
assignments on the right side.

DO j=jstrr,jendr

do i=istrr,iendr

z_w(i,j,0)=-h(i,j)

ENDDO

DO k=1,n,+1

cff_w =hc*(sc_w(k)-cs_w(k))

...

DO i=istrr,iendr

zetatmp=zt_avg1(i,j)

...

ENDDO

ENDDO

ENDDO

DO j = jstrv - 2, jend + 1, 1

DO i = istru - 2, iend + 1, 1

z_w(i,j,0) = -h(i,j)

ENDDO

DO k = 1, n, +1

cff_w = hc * (sc_w(k) - cs_w(k))

...

DO i = istru - 2, iend + 1, 1

zetatmp = zt_avg1(i,j)

...

ENDDO

ENDDO

ENDDO

Figure 5.4: Original code (left), with extended loop bounds (right) for the loops in
subroutine set_huv_tile that need modified loop bounds.



5 Implementation I - Analyzing Stencils and Scheduling Exchanges

5.3 Stencil and Dependency Extraction and Analysis

This section explains how the extracted kernels and their data are used to determine
when halo exchanges for which arrays are necessary.

5.3.1 When and Why Halo Exchanges Are Necessary

First it is important to understand when and why halo exchanges need to happen. Halo
exchanges become necessary when the values in the halo cells become inaccurate and
outdated.

As previously mentioned, CROCO’s kernel computations take place within kernel
loops operating on 2D or 3D space. These computations use a combination of neighbor-
ing cells’ values to compute the result for a given cell. The pattern describing if and how
each cell in the neighborhood of a cell contributes to the combination can be viewed as
a stencil. Applying a stencil to an entire array is done by moving the stencil over the
grid, iterating over the kernel loops.

This means that the value of the center cell of the stencil is dependent on all the
other cells that are part of the stencil. Consequently, it becomes impossible to calculate
the result of a stencil computation when the stencil around a cell extends beyond the
processor’s combined interior and halo area as there is no value to access. The result
of the stencil computation for this cell is therefore invalid. An example for such a
case can be found in Figure 5.5. This means that every application of a kernel causes
cells next to the edge of a subdomain area to have invalid values as they would be
dependent on values outside of the combined halo-interior area. Subsequent applications
of other stencils using these cells’ invalid values lead to the area of invalid values within
the subdomain growing even more. Figure 5.5 gives an example describing this over
multiple steps.

As previously stated, a processor must ensure that all interior cell values are correct.
This means it can never happen that the invalid area grows from the halo cells into
the interior meaning that cells in the interior have incorrect values. Before this could
happen the values of the cells in the invalid area need to be updated. Fortunately, the
halo cells belong to the interior of the subdomain of another process calculating their
correct values. Hence, it is possible to get these values from the responsible process in
a halo exchange. After the halo exchange, all array values are once again correct. In
summary, halo exchanges are needed before the invalid area of a subdomain grows
from its outside through its halo into its interior.

Validity Vectors

The area of an array A that contains invalid values using a validity vector v. This vector
has a length of four and indicates, in each cardinal direction (West, East, South, North),
how many rows or columns are invalid:
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v = (0,0,0,0) v = (1,1,1,1) v=(2,2,2,2) v=(3,3,3,3)

Figure 5.5: Applying the same stencil multiple times to an array leads to the area of cells
inside the array that have a valid value shrinking. With every application,
here, another layer of cells is dependent on cells outside of this subdomain
or its halo.

vA = (vW
A , vE

A, vS
A, vN

A)

(5.1)

A halo exchange becomes necessary when any of the four components of the validity
vector grows larger than the number of halo layers. Alternatively this can be seen as the
effect of accumulating stencils. The computation repeatedly applies stencils to a grid.
This means that after some steps a variable is not only dependent on the values under
its stencil but as the values under the stencil are themselves dependent on the values
under their previous stencil. This means that a cell’s "dependency area" is the area of the
stencil that was accumulated through multiple applications. This accumulated stencil
can be calculated by applying the second stencil to every cell of the first one. This step
can be repeated to accumulate even more stencils.

Figure 5.6 shows the accumulated stencils for the repeated application of a 5-point
stencil. The accumulated stencil can be used to visually determine which cells are
invalid at a point by determining for what cells the accumulated stencil extends over
the edge of the subdomains combined area (interior plus halo). The stencil extent, given
by the dimensions of the minimal bounding box of this accumulated stencil can be
interpreted as the validity vector’s components (see Figure 5.6 for examples). If any of
these components is larger than the halo size, it implies that applying the stencil to some
interior cells of a subdomain is impossible without needing values from cells outside
the domain.

Stencil Offsets

This section explains how the stencils are accumulated. The following code (a modified
extract from CROCO’s step2d) serves as an example:
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Figure 5.6: Applying the same stencil to an array multiple times causes the area of cells
inside the array that have a valid value to shrink. With every application of
the 5-point stencil, here, another layer of cells is dependent on cells outside
of both this subdomain’s interior and its halo.

DO j=jstrv-1,jend

DO i=istru-1,iend

zeta_new(i,j)=zeta(i,j,kstp) + dtfast*pm(i,j)*pn(i,j)*(duon(i,j)-

duon(i+1,j)+dvom(i,j)-dvom(i,j+1))

ENDDO

ENDDO

In this code block, the stencil for calculating zeta_new can be viewed as a combination
of five different stencils, one for each of the kernel’s input arrays. To accumulate the
stencils for each rhs argument separately, assume they have the following validity vectors
before executing the kernel:

vpm = (0, 0, 0, 0) (5.2)

vpn = (0, 0, 0, 0) (5.3)

vzeta_kstp = (1, 1, 1, 1) (5.4)

vdvom = (1, 1, 2, 1) (5.5)

vduon = (2, 1, 2, 2) (5.6)

(Note that zeta(i,j,kstp) is denoted as zeta_kstp as it is an access to the kstp time slice of
zeta and kstp is not the iterator of one of the kernel loops (such as i and j).)
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Now, to accumulate the separate stencils for every rhs arguments, consider the indices
of the rhs accesses as descriptions of offsets to the accumulated input stencils. For
example, when both the rhs and the lhs variable use the indices (i, j) this means the
accumulated stencil of the rhs variable is applied without any offset. The lhs variable
using (i, j) and the rhs variable (i, j + 1) implies that the stencil is applied with an offset
of 1 cell to the right. This offset is given by the dependency distance between the indices
of the lhs result and a rhs argument. The dependency distance for a given index and
variable (for example i) can be calculated by subtracting the index of the access to the
lhs variable from the index of the access to the rhs argument. In the given example, the
dependency distances (or offsets) are calculated as follows (always in relationship to the
lhs result zeta_new(i,j)):

opm(i,j) = (i− i, j− j) = (0, 0) (5.7)

opn(i,j) = (i− i, j− j) = (0, 0) (5.8)

ozeta_kstp(i,j) = (i− i, j− j) = (0, 0) (5.9)

odvom(i,j) = (i− i, j− j) = (0, 0) (5.10)

odvom(i,j+1) = (i− i, (j + 1)− j) = (0, 1) (5.11)

oduon(i,j) = (i− i, j− j) = (0, 0) (5.12)

oduon(i+1,j) = ((i + 1)− i, j− j) = (1, 0) (5.13)

Applying these offsets to the given validities is accomplished by adding or subtracting
them to the corresponding values in the validity vector. So, in the example from before,
for duon(i+1,j) an offset of (1, 0) is added to the accumulated stencil of duon to get the
component stencil for duon(i+1,j). Applying an offset o = (oi, oj) to a validity vector
v = (vW , vE, vS, vN) is achieved as follows:

v = (max(vW − oi, 0), max(vE + oi, 0), max(vS − oj, 0), max(vN + oj, 0)) = (5.14)

= max
element wise

(v + (−oi, oi,−oj, oj), 0) (5.15)

Visually, applying an offset to a stencil means shifting the stencils center oi cells to the
left and oj cells down.

All these component stencils can then be combined to form a collective right-hand
side (rhs) stencil. This is done by overlaying the stencils and determining the maximum
extent for each dimension. This collective stencil, along with its validity, becomes the
new stencil and validity of the variable on the left-hand side of the assignment. Table 5.1
shows an the validity vectors and accumulated stencils before the execution of the
given example kernel, the offsets for all components, how the offset stencils (component
stencils) look like and how these component stencils are added to a collective rhs stencil.
The collective stencil for the presented example can be seen in Table 5.1, its validity or
extent vector is (2, 2, 2, 2).

39



Kernel: zeta_new(i, j) = zeta(i, j, kstp) + dt f ast · pm(i, j) · pn(i, j) · (duon(i, j)− duon(i +
1, j) + dvom(i, j)− dvom(i, j + 1))

Argument Before Dependency Distance After

Access Stencil Validity Index Offset Stencil Validity

dtfast x X x (0, 0, 0, 0) - (0, 0) x x X x (0, 0, 0, 0)

pm(i,j) X (0, 0, 0, 0) i, j (0, 0) X (0, 0, 0, 0)

pn(i,j) X (0, 0, 0, 0) i, j (0, 0) X (0, 0, 0, 0)

zeta(i,j,kstp) X (1, 1, 1, 1) i, j (0, 0) X (1, 1, 1, 1)

duon(i,j) X (2, 1, 1, 1) i, j (0, 0) X (2, 1, 1, 1)

duon(i+1,j) X (2, 1, 1, 1) i + 1, j (1, 0) X (1, 2, 1, 1)

�

X X

dvom(i,j) (1, 1, 2, 1) i, j (0, 0) (1, 1, 2, 1)

X

dvom(i,j+1) (1, 1, 2, 1) i, j + 1 0, 1 X (1, 1, 1, 2)

_

Result

zeta_new(i,j) X (2, 2, 2, 2)



5.3 Stencil and Dependency Extraction and Analysis

Table 5.1: Stencil calculation for the example kernel
zeta_new(i, j) = zeta(i, j, kstp) + dt f ast ∗ pm(i, j) ∗ pn(i, j) ∗ (duon(i, j) −
duon(i + 1, j) + dvom(i, j)− dvom(i, j + 1))
and the input validities given before.

For every rhs access in the kernel, a row shows the input validities
and stencils (given). It then shows the offset determined from the access
indices, both as an offset (or dependency distance) vector and if applicable
as an arrow showing the corresponding shift direction of the stencil’s center.
The resulting shifted stencil (or component stencil) and its validity vector
are shown on the right. "Adding" all stencils by overlaying them taking
the stencils’ centers into account gives the resulting accumulated stencil for
zeta_new.

5.3.2 Stencil Calculations and Accumulation in Practice

For the extracted kernels, the stencil offsets and variable dependencies are extracted and
analyzed using PSyclone.

The calculation is done as presented in the last section. For every assignment inside
a kernel, each variable on the left hand side gets assigned a validity vector. In the
beginning, each accumulated stencil or validity vector is initialized to 0.

Dependency Distances

Calculating the stencil offsets is done using PSyclones _get_dependency_distance func-
tion. This function returns the signed dependency distance between two input indices
(or index terms) with respect to a given index variable. Calculating the corresponding
dependency distance between an rhs argument of an assignment and it lhs result with
respect to the kernel loop variables i and j results in a dependency distance vector of
length 2. This calculation is done for all pairs of lhs results and corresponding rhs
arguments.

The dependency vector is calculated for all types of variables - even scalars and
arrays not operating on either of the i or j dimensions. This is necessary because a
scalar variable in a spatial loop is automatically associated with the corresponding loop
indices at every iteration. The dependency distance between a scalar and an array can
be determined using the loop variables (i,j) as assumed indices for the scalar. Arrays
that are missing an i or j component are treated the same way.

The dependency distances for a kernel are only calculated once, then the kernel stores
the results in a dependency distance list for each of its assignments. This list consists of
the dependency distance vectors between the lhs result and each rhs argument.
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5.4 Scheduling Halo Exchanges

The extracted dependencies and stencils are later used to analyze the access stencils and
find out when halo exchanges are needed.

Algorithm 1: Calculate Validities
Input : assignment ax of kernel k, validities V
Output : updated validities V, list of rhs_component_stencils

rhs_component_stencils = {}
forall rhs arguments ry ∈ assignment ax do
begin

if ry /∈ V then
begin

V[ry] = (0, 0, 0, 0)
end

// offset = pre-calculated dependency distance between l_x and r_y

o = k.dependency_distances(lx, ry)

// Apply offset: Shift stencil center oi cells left, oj cells down

composed_stencil = V[ry] + (−oi, oi,−oj, oj)

rhs_component_stencils[ry] = max∀d∈{NSEW}(composed_stencild, 0)
end

// To "add" all rhs stencils calculate the maximum extent of them

// for each direction d

V(lx) = max∀d∈{NSEW}(rhs_component_stencils[ry]d, ∀ ry ∈ assignment ax)

return V, rhs_component_stencils

5.4.1 Calculating Stencil Compositions

The dependency distances correspond to the offsets from the beginning of this section.
This means that applying an offset to the validity vector of the corresponding rhs
argument of an assignment gives the component stencil for this variable. Then the
addition of all the rhs component stencils gives the new accumulated stencil and the
validity vector for a variable.

The first step for this is to go through all kernels in execution order and calculate the
validity vectors (or bounding box of the accumulated stencils) for all variables. This is
done with Algorithm 1 using the method described in Section 5.3.1.

For each assignment, this algorithm calculates a stencil vector for the result, consisting
of four values. The four values, one for every cardinal direction represent the minimal
bounding box around the composition of all the component stencils for the rhs arguments
of the assignment. Each value indicates how far the combined stencil representing all
dependencies of an array cell reaches in one of the cardinal directions. With every
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DO j = jmin, jmax, 1 ! Modified loop bounds

DO i = imin + 1, imax, 1 ! Modified loop bounds

drhs(i,j) = cff1 * zeta(i,j,kstp) + cff2 * zeta(i,j,kbak) + cff3 * zeta

(i,j,kold) + h(i,j)

duon(i,j) = 0.5d0 * (drhs(i,j) + drhs(i - 1,j)) * on_u(i,j) * urhs(i,j)

dvom(i,j) = 0.5d0 * (drhs(i,j) + drhs(i,j - 1)) * om_v(i,j) * vrhs(i,j)

ENDDO

ENDDO

Figure 5.7: Assume that the validity for all time slices of zeta at the beginning of the ker-
nel is (2, 2, 2, 2). Calculating the accumulated stencils gives vdrhs = (2, 2, 2, 2)
and vduon = (3, 2, 2, 2) with the component with the stencil causing the 3
being drhs. Nevertheless exchanging drhs or duon before the kernel does solve
not the problem as their stencils only grow this large during the kernel. It
is zeta that is causing the problem and needs to be exchanged. (The code
sample is a modified extract from the step2d subroutine of CROCO’s BASIN
test case.)

assignment, the dependencies and stencils are further propagated to new variables.

5.4.2 Identifying Necessary Halo Exchanges

Section 5.3.1 showed that halo exchanges are necessary whenever an access stencil grows
larger than the number of halo layers or, differently phrased, whenever the dimensions
of the bounding box of the accumulated stencil of an assignment are larger than the
number of halo layers. Then a halo exchange is needed for some variable to reset its
validity to 0. The next step is determining which variable needs to be exchanged as it
is not enough to just do a halo exchange for any variable with an access stencil that
has grown too large. It is not possible to just execute halo exchanges in the middle of a
kernel block as communication operations can only take place before and afterwards.
Doing a halo exchange for a variable before a kernel block might not achieve the goal of
keeping its accumulated stencil small enough if for example the corresponding variable
is overwritten at the start of the kernel. The code sample in Figure 5.7 shows an example
for this.

For every access stencil in a kernel that grows to large it is therefore necessary to
backtrace it to the beginning of the kernel to determine which of its components caused
it to grow this large. The arrays associated with these components need to be exchanged
before the kernel.

Determining when and which halo exchanges are necessary is done with Algorithm 2.
It determines a set of kernel-variable tuples that list all necessary halo exchanges for
variables and the kernels before which the halo exchanges need to be done.
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Algorithm 2: Determine Halo Exchanges
Input : List of kernels in execution order ordered_kernels

Output : List of tuples (k, v) of all exchanges of a variable v necessary before a
kernel k

validities← {}
results← {}
forall kernel k ∈ ordered_kernels do
begin

for assignment Ai ∈ k with LHS variable li do
begin

vli , rhs_components← calculate_validities(vbefore, Ai)
validities[li] = vli

// If a stencil is too large a halo exchange needs to happen

if vd
li
> num_layers for any direction d then

begin
transitive_causesd ← {li}
// Trace back assignments through the ones before them

for assignment Aj ∈ [Ai...A0]o f thiskernelk, with LHS variable lj do
begin

if lj ∈ transitive_causesd then
begin

transitive_causesd ← transitive_causesd − {lj}

// Determine variables with stencils with

// causal influence on the validity vl
d
j

for rk ∈ get_rhs_arguments(Aj) do
begin

// look at component stencil of rk

if rhs_components[rk]
d > num_layers then

begin
causal_in�uences← causal_in�uences+ {rk}

end
end
transitive_causes← transitive_causes+ causal_in�uences

end

// transitive_causes caused the too large stencil earlier

for x ∈ transitive_causes do
begin

results← results+ {(x, k)}
vx = (0, 0, 0, 0) // Reset validity

end
end
Jump to beginning of kernel to calculate validity vectors with new values

end
else
begin

Go to next assignment
end

end
end



5.5 Time Stepping

5.4.3 Determining the Time Window for Communication

While the synchronous halo exchanges are executed and can be scheduled at one specific
point in time, the communication for the asynchronous halo exchanges is executed
during a window of time. For every variable - kernel pair that was determined in the
step before, this window starts after the last write access on this variable before the
kernel end ends at the start of the kernel. The code that initializes the communication
needs to be inserted at the beginning of the time window.The code that terminates
the communication for the halo exchanges needs to be inserted at the end of the time
window and therefore just before this kernel whose read access made the halo exchange
necessary.

5.5 Time Stepping

As discussed in Chapter 2, CROCO’s main step loop is divided into four substeps. The
parts within the slow mode calculation are executed once per step, while the step2d part
is executed nfast times. Separate counters are used for these two loops. In the fast mode,
information from time steps t− 1, t− 2, and t− 3 is used to calculate new values at
time t, resulting in arrays with a time dimension of size four. The slow mode references
only two other time steps, and the corresponding arrays have a time dimension of three.

5.5.1 Time Indexing Throughout Substeps

The time indices for the current and previous time steps are incremented by one at each
step to move to the next time step. They reset to one when they grow larger than the
length of the time dimension, which is either 3 or 4. This shifting of time indices ensures
that the array slice representing the present time in the previous time step becomes the
array slice for the past time in the current step.

However, the time indexing process is not entirely consistent. While time indices
are increased once at the beginning of each time step, different substeps may use
different time indices for the same variables. Additionally, some substeps modify these
time indices during their execution. Aliasing further complicates the process, causing
differently named indices to refer to the same time slice in some time steps but not in
others. For referencing the three different time steps used in the slow mode for example,
the code uses five index variables. Figure illustrates the time index modifications and
aliases throughout the step loop of the BASIN test case.

When such a change to a time index happens, it is important to also update the
validities accordingly to ensure all values are transferred to the corresponding new time
slice of an array. This is done using connectors in the way explained in Section 5.2.2. So
whenever one or multiple time indices are modified, this is representded by a connector
kernel.

The code modifying the time indices and calling the four subcomponent’s subroutines
of step is relatively complex, being nested among loops and conditional statements, and
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Slow step

Fast step

Start

Setup

(nstp = nstp + 1)
nrhs = nstp

pre_step3d

nrhs = nnew
nnew = indx

kold = kbak
kbak = kstp
kstp = knew

(knew = kstp+1)

step2d

step3d_uv

step3d_t

Finalize

End

Aliases:
nrhs = nstp
nadv = nstp

Aliases:
nnew = indx

Aliases:
nadv = nrhs

Figure 5.8: The time stepping loop and the time index modifications that were used here.
The dashed arrow symbolizes the slow step loop which is not considered in
the time stepping model. Assignments in parentheses are redundant and
only shown for better understanding.



5.5 Time Stepping

if substep == 0:

aliases = {"nrhs": "nstp", "nadv": "nstp"}

reassignments_start = [("nrhs", "nstp")]

reassignments_end = [("nrhs", "nnew"), ("nnew", "indx")]

elif substep == 1:

aliases = {}

reassignments_start = [("kold", "kbak"), ("kbak", "kstp"), ("kstp", "

knew")]

elif substep == 2:

aliases = {"indx":"nnew"}

elif substep == 3:

aliases = {"nadv": "nrhs"}

Figure 5.9: Python code containing information about the time indices. aliases con-
tains pairs of indices that are aliases, both reassignment lists contain tu-
ples (lhs, rhs) representing the timestep reassignments lhs = rhs. reassign-
ments_start is applied before a substep’s subroutine, reassignment_end after-
wards. The four substeps have indices 0 to 3 in execution order.

spread out over multiple subroutines. This makes it very hard to automatically process
in a way that accurately and usefully captures the dependencies and relationships of the
counters, indices and subroutine calls over multiple loop iterations. This needs to be
partially done by the user, who inputs a manually created list of assignments for the
time indices and their locations.

Fortunately, most of these changes occur at the beginning or end of a substep. There-
fore, this is solved by the user providing a list of assignments that need to be imple-
mented by connector kernels at the start and end of each substep. Figure 5.9 shows such
a list, representing the modifications of time indices throughout the step loop of the
BASIN test case.

Splitting up the Time Step

Because of the differences in time indices, the step subroutine is not analyzed in one
single piece, and instead, each of its four subroutines is analyzed individually. This
ensures that within each of the parts, time indexing is consistent and does not change.

Additionally, communication can not be spread over multiple different parts. This
means that every time window for a halo exchange has to be located in one part entirely
and can not start and end in different ones.

Time Indexing Patch

At certain times, the step2d subroutine indexes arrays’ time slices in the following way:

rufrc(i,j)=cff1*cff + cff2*rufrc_bak(i,j,3-nstp)
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Automatically linking the 3− nstp to the equivalent time index (in this case nnew) would
again be very difficult. These array accesses are therefore replaced with equivalent ones
using simple time indices. In this case, the result would be:

rufrc(i,j)=cff1*cff + cff2*rufrc_bak(i,j,nnew)

This is implemented using a patch and manually determining the appropriate indices.

5.5.2 Modeling the Step Loops

As the steps are executed in a loop, this needs to be modelled, too.

Outer Slow Step Loop

For this, only one slow 3D time step at a time will be considered. While it would be
possible to consider data dependencies over multiple time steps in a row, for example
by unrolling the main step loop, doing so becomes very complex rather quickly. Each
unrolled iteration works on different input stencils and can therefore require different
communication operations.

Again, the timestep reassignment is too complex to automatically be usefully captured
and analyzed. Therefore an automatic dependency analysis over multiple time steps
was not possible.

The presence of the inner substep loop also complicates things as it would necessitate
unrolling both loops simultaneously, making everything even more difficult. In this case
all validities and operations would be dependent on the iteration index of each of those
loops. Unrolling the inner loop by x iterations and the outer loop by y means there are
potentially x different cases. As creating code implementing the communication for all
these different cases would be very complex, this is out of the scope of this thesis.

Fast Step Loop

As a proof of concept, the inner fast mode loop is unrolled into n_layers (the number
of halo layers) iterations. This does - in theory - make it possible to update a variable
only every second iteration. Additionally, communication windows are allowed to be
spread over different iterations of step2d loop, here. This means that, for example,
a communication window can start in the first iteration and end in the second one,
increasing the potential length of this window.

Periodic Resets

To ensure that every iteration of a loop works on identical input stencils and dependen-
cies, it is necessary to do halo exchanges before the and of a substep. This means that,
in addition to halo exchanges triggered when accumulated stencils exceed the halo size,
some halo exchanges are scheduled at the end of a substep. This ensures that a substep
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or the next time step starts with "freshly exchanged" halos, allowing all stencils to be
initialized with 0.

To minimize the frequency of these halo exchanges, they are only executed for
variables that are not overwritten before being read the next time.

5.6 Limitations

The presented approach works under a row of assumptions and has a certain set of
limitations.

It assumes that all kernel loops use i and j as control variables which should however
always be true in CROCO’s code. Additionally it ignores everything happening outside
of kernels. Information on things happening outside of kernels (apart from subroutine
calls) currently needs to be manually collected given as a program input. This is
especially true for everything regarding time indices and the main time stepping loop.

It is assumed that assignments in the same kernel have no additional dependencies
among them that need to be considered. The approach to calculating stencil extends
assumes that the center of a stencil is always part of the stencil and its minimal bounding
box. While this should generally be the case, if it is not the approach overestimates the
stencil extend, possibly causing unnecessary halo exchanges. It does, however, never
underestimate it which would lead to using fewer halo exchanges than needed and
incorrect simulation results.

The approach does also not guarantee a minimal number of halo exchanges even if
the challenges with time stepping are ignored. It uses a greedy approach and schedules
halo exchanges once they become necessary (because an accumulated stencil grows too
large). In some cases however, using an additional halo exchange for one variable can
lead to a reduction in halo exchanges of other variables that are dependent on the first
one.

The presented approach also ignores any if and goto constructs and assumes every
piece of code is executed every time. This could easily cause problems as deviations
in control flow can change which kernels are executed when and therefore influence
stencils and communication schedule. However it did not cause any problems in this
case.
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6 Implementation II - Generating
Asynchronous MPI Code

The scheduling step determines when halo exchanges are necessary and identifies the
beginning and end of the time window for an asynchronous halo exchange. This uses
these results to generate code that implements this communication pattern.

6.1 Communication Scheme

The asynchronous halo exchanges are implemented using the non-blocking MPI_IRECV
and MPI_ISEND calls instead of their blocking counterparts that are used in the original
CROCO code. This allows a process to initiate the sending process and continue compu-
tation while the communication is happening. This helps to to hide the communication
latency compared to having to wait for the entire send and receive operation to finish
and the blocking call to terminate before continuing computation. Both non-blocking
calls need corresponding MPI_WAIT call for completion. The MPI_WAIT calls for
MPI_ISEND ensures the message has been sent, allowing safe modification of the data in
the send buffer. Conversely, the MPI_WAIT call for MPI_IRECV confirms the message’s
receipt and provides access to the received data in the receive buffer.

...

write access on var

irecv

copy to send buffer

isend

...

wait for isend

wait for irecv

copy from recv buffer

read access on var

...

Figure 6.1: Communication scheme for asynchronous halo exchanges.
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6.1.1 Communication Implementation

Figure 6.2 shows the start of the asynchronous halo exchange. After initializing an non-
blocking receive, the data is copied from the array into a one-dimensional buffer array
that is then passed as an argument to the non-blocking send operation. An example of
how this is implemented is shown in Figure 6.3.

...

! start communication here

if (has neighbor in this direction)

then

MPI_IRECV from this neighbor,

to receive buffer

end if

if (has neighbor in this direction)

then

copy data to send buffer

MPI_ISEND from send buffer, to

this neighbor

end if

...

! end communication here

if (has neighbor in this direction)

then

MPI_WAIT for MPI_IRECV to

terminate

copy data from receive buffer

to array halo

MPI_WAIT for MPI_ISEND to

terminate

Figure 6.2: Left: Pseudocode describing the copy, send and receive operations used at
the beginning of the communication window.
Right: Pseudocode describing the wait and copy operations at the end of the
communication window.

After initiating the non-blocking send process can return to computation without
having to wait for the data to be transmitted first.

The transmission will ideally happen in the background during computation until the
code arrives at the end of the communication window. There one MPI_WAIT finalizes
the send operation, waiting until the send has been completed and another one finalizes
the receive operation, waiting until all data has been received. The received data is then
copied ffrom the buffer to the corresponding array’s halo cells. Figure 6.4 shows an
implementation example for this.

6.2 Communication Implementation Details

This section gives further details on how this communication is implemented and how
the corresponding code is generated automatically.
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! Receive

IF (north_inter2) then

CALL MPI_IRECV(vbar_knew_buf_rev_n, size_x, MPI_DOUBLE_PRECISION, p_n, 1,

MPI_COMM_WORLD, vbar_knew_req(4), ierr)

end if

! other directions

...

! Copy to buffer and send

if (north_inter2) then

DO jpts = 1, npts, 1

DO i = imin_mpi, imax_mpi, 1

vbar_knew_buf_snd_n(1 + (i - imin_mpi) + (1 + (imax_mpi - imin_mpi)

) * (jpts - 1)) = vbari,jpts + mmmpi - npts,knew)

ENDDO

ENDDO

call MPI_ISEND(vbar_knew_buf_snd_n, size_x, MPI_DOUBLE_PRECISION, p_n,

3, MPI_COMM_WORLD, bar_knew_sreq(4), ierr)

END IF

! other directions

...

Figure 6.3: Code example implementing the beginning of a halo exchange with a tile’s
southern neighbor.



...

! wait for receive to terminate

IF (north_inter2) then

CALL MPI_WAIT(vbar_knew_req(4), MPI_STATUS_IGNORE, ierr)

DO jpts = 1, npts, 1

DO i = imin_mpi, imax_mpi, 1

vbar(i,jpts + mmmpi,knew) = vbar_knew_buf_rev_n(1 + (i - imin_mpi) +

(1 + (imax_mpi - imin_mpi)) * (jpts - 1))

ENDDO

ENDDO

ELSE

! if there is no neighbor in that direction fill the halo with the

values on the inside next to it

IF (north_inter) then

DO jpts = 1, npts, 1

DO i = imin_mpi, imax_mpi, 1

vbar(i,jpts + mmmpi,knew) = vbar(i,jpts + mmmpi - npts,knew)

ENDDO

ENDDO

END IF

END IF

! wait for send to terminate

IF (north_inter2) then

CALL MPI_WAIT(vbar_knew_sreq(4), MPI_STATUS_IGNORE, ierr)

END IF

Figure 6.4: Code implementing the termination of the halo exchange with a tile’s north-
ern neighbor.



6.2 Communication Implementation Details

6.2.1 Additional Send and Receive Buffers

The data comprising one of the eight directional parts of a subdomains halo is stored in
multiple noncontiguous array cells. For sending and receiving it is first linearized and
copied into a one-dimensional contiguous buffer, similarly to CROCO’s original code
(see Section 2.3.1).

In contrast to the original code, which can only linearize and exchange arrays or array
slices with two or three dimensions (corresponding to the three spatial dimensions), the
implemented approach can automatically generate code to linearize and communicate
arrays with more and different dimensions.

In CROCO code this can be used for arrays that have an additional dimension for the
different tracers (for example t which has five dimensions: i, j, k (space), time and tracers).
In the original code, the halo exchanges for t (or more specifically for a four dimensional
time-slice of it) are handeled by doing one single and separate halo exchange for every
3D slice of the 4D array that corresponds to a tracer. In the BASIN example which
uses two tracers, for example, exchanges for t are implemented by using one 3D halo
exchange for each tracer’s slice of the array. However, in the implemented approach,
these exchanges are combined into a single ’4D’ exchange. This reduces the amount of
messages that are necessary, thereby potentially reducing communication overhead.

In the case of communication windows spanning multiple time steps in the fast time
loop, it is important to consider that the array slice that is exchanged at the start of the
communication window has a time different index than the same slice at the end of the
window. It is necessary to adapt the second copy operation accordingly to copy the data
back to the time slice using the new index.

Array Dimension Analysis for MPI Calls

To allocate temporary buffers of the correct size and correctly copy the halo data to and
from them, both the sizes of the dimensions of an array and information on how the
data inside is typically accessed is needed. The array sizes can be extracted from the
corresponding the PSyIR ArrayReference. The information in Table 6.1 is then used to
determine if an array dimension is accessed as a whole using a loop (for all three spatial
dimensions and tracers), or just one slice at a time (for time and weight dimensions). For
each dimension that is accessed fully, a correctly sized loop is generated automatically
to copy data into and from the buffer. Additionally this data is used to automatically
create code for handling periodic boundary conditions if necessary.

6.2.2 Neighbors

In the case of physical boundary conditions, subdomains at the edges do not have a
neighbor in certain direction to exchange halo values with. This is handeled in the same
way the original CROCO code handles these cases, by testing the relevant flags (e.g.
north_inter2) and doing a halo exchange only if a communication partner exists. The
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Table 6.1: Array access details.

Array dimension Loop variable Dimension size

xi-dimension i size_x
eta-dimension j size_e
third (vertical) spatial dimension k 1 - N / 0 - N
time none (accessed one slice at a time) 1 - 3 / 1 - 4
weight none (accessed one slice at a time) 1 - 5
tracers itrc 1 - NT

rank of the subprocess to communicate with is also copied from the original CROCO
code (e.g. p_N for the northern neighbor).

6.2.3 Variables, Symbol Tables and Bounds Computations

Some variables that are needed for making the MPI calls are not declared in the
subroutines where MPI calls need to be inserted. PSyclone needs to know about
variables, symbols and their properties for code generation. Sometimes, it becomes
necessary to introduce a variable from one subroutine in one file into another. To access
important variables for iteration ranges, array indices, and other purposes, a patch
is used to generate a file, that is used as a lookup table. This file contains a list of
subroutines and variables, along with flags for the C preprocessor and header inclusions.
After preprocessing, this file’s PSyIR representation can be used to easily access the
PSyIR symbols for the included variables. Whenever there’s a need to add variables or
compute iteration ranges this information is duplicated and inserted into other files.

Common Variables

Because of register optimization applied by the Fortran compiler, non-blocking MPI calls
don’t always work as intendent [25]. The compiler works under the assumption that
subroutine calls do not influence the data in variables that are neither common variables
nor arguments of the subroutine. In this case it will assume that calling a wait operation
for a receive like

CALL MPI_WAIT(vbar_knew_req(4), MPI_STATUS_IGNORE, ierr)

from the code example before does not influence the array vbar_knew_buf_rev_n if it
is a local array. Consequently it will use this assumption during compilation and
possibly modify register usage and operation order accordingly. In this case, however
this assumption is simply not true and the optimization can lead to incorrect results.

To address this problem, one of the solutions recommended by the MPI standard [25]
involves making the buffers global variables. This causes the compiler to drop the
assumption that the values in vbar_knew_buf_rev_n can not change during the wait.
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However, PSyclone does not provide an option to implement this directly. Therefore, a
workaround is necessary, which involves adding the global declaration to a subroutine’s
symbol table pretending the entire declaration is the name of one variable. Additionally,
request buffers must also be made global since they are accessed in different subroutines.

6.2.4 Kernels Occuring Multiple Times

Multiple subroutines and kernels they consist of are called multiple times during
program execution. They can also be called during different execution phases (e.g. setup
and main time stepping phase) or with different arguments. These different phases will
have different needs for communication, a halo exchange that is necessary at one point
might not be necessary at another or at one point it might be necessary to terminate
(wait) a halo exchange that was initiated before, but it actually wasn’t initiated during
every call of a subroutine. Therefore, the generated halo exchange instructions are
surrounded by if instructions referencing multiple of CROCO’s counter variables to
make sure they are only executed during the correct program phase. An example for
this can be seen in Figure 6.5. The asynchronous halo exchanges are also only generated
for the main time stepping loop. For the setup phase CROCO’s original halo exchanges
are still used. Section 5.5 created the need for checking if a statement is executed in the
first, last or in general which iteration of a loop. The indicators and counter variables in
Table 6.2 are used for that.

Table 6.2: A list of indexes and indicators useful for identifying the current code phase
or the iteration index (counter) of the current loop.

Code Phase Code Phase Indicator Substep Counter Global Iteration Index

setup iic == 0 - -
pre_step3D iif == 0 - iic (ntstart to ntstart +

ntimes), nbstep3d (0 to
ntimes)

step2D iif > 0 .and. (iif−nfast) == 0 iif (1 to nfast) iic, nbstep3d
step3d_uv iif− nfast == 1 - iic, nbstep3d
step3d_t iif− nfast == 2 - iic, nbstep3d

6.2.5 Periodic Boundary Conditions

In the original CROCO code the exchange subroutines call the MessPass subroutines
that implement the MPI calls for the halo exchanges. These subroutines also implement
setting periodic boundary conditions if applicable. Whenever the original code calls
an exchange subroutine, the asynchronous code variant replaces this by a call to a
corresponding subroutine ex_periodic_bc as shown in Figure 6.5. These are copies of
the exchange subroutines that only implement the boundary conditions but do not call
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MessPass that contains the synchronous halo exchange. Alternatively these subroutines
can be generated fully automatic

! only execute exchange if this is called during setup phase

IF (iic == 0) THEN

CALL exchange_v2d_tile(istr, iend, jstr, jend, vbar(-1,-1,knew))

! otherwise only set boundary conditions

ELSE

CALL ex_pbc_v2d_tile(istr, iend, jstr, jend, vbar(-1,-1,knew))

END IF

Figure 6.5: Replacing exchange calls by a subroutine ex_pbc_tile that implements periodic
boundary conditions. The if condition ensures that the original exchange
will be used if the code is executed during setup before time stepping.
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7 Evaluation

This chapter covers testing and evaluation, with the aim of evaluating the generation
process, the code itself and its performance for both generated and original source code.

7.1 Evaluation Setup and Experiments

Testing was carried out using the CROCO BASIN test case, utilizing the previously
described input settings.

7.1.1 Test Case Setup

To ensure accurate numerical results, a suitable timestep size was chosen, small enough
to work with all problem sizes without causing numerical instability. The number of
fast timesteps during one slow timestep was set to 66, which is close to the original 65
and numerically stable but fullfills the additional requirement of being a multiple of the
number of iterations of the fast step loop that are unrolled during dependency analysis
as specified in Section 5.5. For performance analysis across various problem sizes,
different versions of the BASIN test case were created with grid dimensions ranging
from 24 to 240 cells in both the xi and eta dimension. These changes were implemented
using the corresponding patches mentioned in Section 4.2.2. For benchmarking, printing
(intermediate) results and diagnostics were both switched off.

7.1.2 Code Versions for Comparison

The input code for stencil analysis and code generation was derived from a patched
version of the original CROCO MPI code, as outlined in Section 4.2.2. This patched
variant of the original code was used as the baseline for all comparisons ensuring a fair
evaluation.

In the previous chapters, two key aspects to generate code for CROCO’s halo ex-
changes were discussed: the identification of when halo exchanges are necessary (as
detailed in Chapter 5) and the implementation of these exchanges using asynchronous
MPI operations (as detailed in Chapter 6). The evaluation will to analyze and compare
the results from using these two approaches and the baseline code. The baseline was
therefore compared to two other code variants:

• Reduced Halo Exchanges (reduced-mpi) This variant applies the approach described
in Chapter 5 to determine when halo exchanges are necessary. Then CROCO’s
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original synchronous exchange operations are inserted at the identified locations.
This test the automatic scheduling of halo exchanges without changing the com-
munication mode to asynchronous communication.

• Autogenerated Asynchronous Halo Exchanges (rposeidon-mpi-async) Similar to the
first variant, this uses the approach outlined in Chapter 5 for determining necessary
halo exchanges. However, it uses the method from Chapter 6 to automatically
generate code for these asynchronous halo exchanges. This tests the combination of
automatically scheduling halo exchanges and their asynchronous implementation.

As explained in Section 5.5.2, additional halo exchanges are required at the end of each
substep in the main step loop to ensure consistent initial stencils for all iterations. These
exchanges are restricted to variables that are also exchanged in the original code, for both
automatically generated code variants. This uses information extracted from the original
code to avoiding resetting temporary working arrays. Most importantly, it improves
the comparability of performance across all three versions, as they are more likely to
involve the same exchanges, with variations primarily occurring in implementation and
location. This means it is possible to compare the impact of both changes in location
and number and changes from synchronous to asynchronous and from the original to
the automatically generated code.

It’s worth noting that the original CROCO code appears to follow a similar principle.
For each use case, a unique version of the code is generated by the pre-processor. To
ensure proper functioning and an appropriate number of halo exchanges for all of them,
it is reasonable to assume that the original code follows a rule where substeps must be
implemented in such a way that certain variables require a halo exchange at the end of
a subroutine if the halo is modified.

7.1.3 Technical Setup

Benchmarking was conducted using the Grid’5000 testbed [26]1 , on a Dell PowerEdge
C6420 with Intel Xeon Gold 6130 processors. These processors have 16 cores per CPU
and a clock speed of 2.10 GHz. The network infrastructure used was Omni-Path
configured at a rate of 100 Gbps, enabled by Intel Omni-Path HFI Silicon 100 Series
hardware.

Compilation was done using the gfortran compiler.Open MPI 4.1.0 was used as MPI
implementation.

This means that the code was executed binding each process to one processor core
and using the omnipath interconnects.

1Experiments presented in this section were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr).

60



7.1 Evaluation Setup and Experiments

7.1.4 Benchmarking Experiments

To assess code performance, scaling experiments were conducted, spanning a range of
problem sizes and varying the number of processors or cores. Each experiment was
conducted on 2, 4, 8, 16, and 32 cores, corresponding to the number of MPI processes
and associated subdomains. The simulation was executed for a number of steps that
was constant but scaled by problem size to avoid excessive run times.

Runtime was measured using Python’s timeit module to capture the execution time
for running the code using the shell command mpirun ./croco <options>. Each mea-
surement was repeated 10 times for accuracy.

7.1.5 Correctness of Results

All simulation results were validated by comparison with the output produced by
sequential computation. A result was considered correct if it was either identical or
within a relative tolerance of 10−9 of the reference output.

61





8 Results

This section compares the results of code generation and benchmarking for the original
code and the two versions of the automatically generated code.

8.1 Code Generation

The prototype using the presented approaches analyzed the content of 21 files containing
code that is a part of the main time-stepping loop. During code generation, it created a
modified variant of 8 of them, removing the original halo exchanges and creating new,
asynchronous ones.

8.1.1 Number and Location of Exchanges

This section compares the halo exchanges for the BASIN test case in the original CROCO
code, and the code version using CROCO’s original halo exchanges in automatically
determined locations (reduced-mpi).

The original code used 45 halo exchanges, with 3 occurring within the step2d subrou-
tine implementing the fast step and the remaining 42 occurring in other subroutines.
These 45 halo exchanges were replaced by only 19 automatically generated exchanges.
This substantial reduction indicates that many original exchanges were not strictly neces-
sary and thus not recreated automatically. Comparing the halo exchanges in both code
variants (see Table 8.1 and Table 8.2) shows how none of the exchanges in the set_vbc_tile,
set_depth_tile or omega_tile subroutines also occur in the auto-generated code version.
These exchanges are redundant in the original code. They probably exist because they
are needed in different use cases using additional model features or numerical schemes
but are not useful in this case.
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8 Results

Table 8.1: List of automatically created synchronous halo exchanges for each of the four
sections in execution order. Stencil extents (validities) at exchange are shown
next to the variable names.

Reduced Exchanges

Section List of exchanges 2D exchanges 3D exchanges ’4D’ exchanges

pre_step3D set_HUV_tile
exchange_u3d_tile(istr, iend, jstr, jend, huon(-1,-1,1))
exchange_v3d_tile(istr, iend, jstr, jend, hvom(-1,-1,1))

pre_step3d_tile
exchange_u3d_tile(istr, iend, jstr, jend, u(-1,-1,1,nnew))
exchange_v3d_tile(istr, iend, jstr, jend, v(-1,-1,1,nnew))
exchange_r3d_tile(istr, iend, jstr, jend, t(-1,-1,1,nnew,itrc))

uv3dmix_tile
exchange_u3d_tile(istr, iend, jstr, jend, u(-1,-1,1,indx))
exchange_v3d_tile(istr, iend, jstr, jend, v(-1,-1,1,indx))

huon (1, 0, 0, 0)
hvom (0, 0, 1, 0)
u_nnew (2, 0, 1, 1)
v_nnew (1, 1, 2, 0)
u_indx (1, 0, 1, 0)
v_indx (1, 0, 1, 0)

t_nnew (2, 0, 2, 0)

step2D step2d_FB_tile
exchange_r2d_tile(istr, iend, jstr, jend, zeta(-1,-1,knew))
exchange_u2d_tile(istr, iend, jstr, jend, ubar(-1,-1,knew))
exchange_v2d_tile(istr, iend, jstr, jend, vbar(-1,-1,knew))

zeta_knew (0, 1, 0, 1)
ubar_knew (1, 1, 1, 1)
vbar_knew (1, 1, 1, 1)

step3D_uv set_HUV2_tile
exchange_u3d_tile(istr, iend, jstr, jend, u(-1,-1,1,nrhs))
exchange_v3d_tile(istr, iend, jstr, jend, v(-1,-1,1,nrhs))

step3d_uv2_tile
exchange_u3d_tile(istr, iend, jstr, jend, u(-1,-1,1,nnew))
exchange_v3d_tile(istr, iend, jstr, jend, v(-1,-1,1,nnew))
exchange_u2d_tile(istr, iend, jstr, jend, ubar(-1,-1,knew))
exchange_v2d_tile(istr, iend, jstr, jend, vbar(-1,-1,knew))
exchange_u3d_tile(istr, iend, jstr, jend, huon(-1,-1,1))
exchange_v3d_tile(istr, iend, jstr, jend, hvom(-1,-1,1))

ubar_knew (2, 2, 2, 2)
vbar_knew (2, 2, 2, 2

u_nrhs (1, 1, 1, 1)
v_nrhs (1, 1, 1, 1)
u_nnew (2, 2, 2, 2)
v_nnew (2, 2, 2, 2)
huon (2, 2, 2, 2)
hvom (2, 2, 2, 2)

step3D_t t3dmix
exchange_r3d_tile(istr, iend, jstr, jend, t(-1,-1,1,nnew,itrc))

t__nnew (1, 0, 1, 0)

Sum
(slow
/ fast)

2 / 3 12 / 0 2 / 0

Some variables, like the tracer field t and the transports huon and hvom, are exchanged
in both versions but need fewer exchanges in the automatically generated code. Most of
the halo exchanges that happen in both code variants are located in the same subroutines.

The auto-generated code also performs a halo exchange of both u_indx and v_indx
(the indx time slice of u and v) at the end of pre_step3d that the original code does
not need. Checking the results of a code variant with those two exchanges manually
removed proves that these exchanges are in fact unnecessary, as removing them does not
change the simulation results. They are only created because of the time stepping model
described in Section 5.5 to reset the accumulated stencils at the end of the pre_step3d
section to be able to guaranuee consistent input stencils for all substeps. These variables
are reused as u_nnew and v_nnew in the step3d_uv substep before the next time step and
exchanged again before its end. The first exchange is therefore not strictly necessary
and only an artifact of the division of each step into the four substeps to handle the time
stepping. This means that the way the analysis of the main time-stepping loop and the
time indices are implemented causes the generation of additional and non-necessary
halo exchanges for this test case.
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Table 8.2: List of original synchronous halo exchanges for each of the four sections in
execution order.

Original code

Section List of exchanges 2D exchanges 3D exchanges ’4D’ exchanges

pre_step3D set_HUV_tile
exchange_u3d_tile(istr, iend, jstr, jend, huon(-1,-1,1))
exchange_v3d_tile(istr, iend, jstr, jend, hvom(-1,-1,1))

set_vbc_tile
exchange_u2d_tile(istr, iend, jstr, jend, bustr)
exchange_v2d_tile(istr, iend, jstr, jend, bvstr)
exchange_u2d_tile(istr, iend, jstr, jend, sustr(-1,-1))
exchange_v2d_tile(istr, iend, jstr, jend, svstr(-1,-1))
exchange_r2d_tile(istr, iend, jstr, jend, stflx(-1,-1,itemp))
exchange_r2d_tile(istr, iend, jstr, jend, srflx(-1,-1))
exchange_r2d_tile(istr, iend, jstr, jend, btflx(-1,-1,itemp))

omega_tile
exchange_w3d_tile(istr, iend, jstr, jend, we(-1,-1,0))

pre_step3D_tile
exchange_r3d_tile(istr, iend, jstr, jend, t(-1,-1,1,nnew,itrc))
exchange_u3d_tile(istr, iend, jstr, jend, u(-1,-1,1,nnew))
exchange_v3d_tile(istr, iend, jstr, jend, v(-1,-1,1,nnew))

bustr,
bvstr,
sustr,
svstr,
stflx_itemp,
srflx,
btflx_itemp

huon,
hvom

we
u_nnew

v_nnew

t_nnew

step2D step2d_FB_tile
exchange_r2d_tile(istr, iend, jstr, jend, zeta(-1,-1,knew))
exchange_u2d_tile(istr, iend, jstr, jend, ubar(-1,-1,knew))
exchange_v2d_tile(istr, iend, jstr, jend, vbar(-1,-1,knew))

zeta_knew,
ubar_knew,
vbar_knew

step3D_uv set_depth_tile
exchange_r2d_tile(istr, iend, jstr, jend, zt_avg1)
exchange_w3d_tile(istr, iend, jstr, jend, z_w(-1,-1,0))
exchange_r3d_tile(istr, iend, jstr, jend, z_r(-1,-1,1))
exchange_r3d_tile(istr, iend, jstr, jend, hz(-1,-1,1))
exchange_r3d_tile(istr, iend, jstr, jend, hz_bak(-1,-1,1))

set_huv2_tile
exchange_u3d_tile(istr, iend, jstr, jend, huon(-1,-1,1))
exchange_v3d_tile(istr, iend, jstr, jend, hvom(-1,-1,1))
exchange_u3d_tile(istr, iend, jstr, jend, u(-1,-1,1,nrhs))
exchange_v3d_tile(istr, iend, jstr, jend, v(-1,-1,1,nrhs))

omega_tile
exchange_w3d_tile(istr, iend, jstr, jend, we(-1,-1,0))

step3d_uv2_tile
exchange_u3d_tile(istr, iend, jstr, jend, u(-1,-1,1,nnew))
exchange_v3d_tile(istr, iend, jstr, jend, v(-1,-1,1,nnew))
exchange_u3d_tile(istr, iend, jstr, jend, huon(-1,-1,1))
exchange_v3d_tile(istr, iend, jstr, jend, hvom(-1,-1,1))
exchange_u2d_tile(istr, iend, jstr, jend, ubar(-1,-1,knew))
exchange_v2d_tile(istr, iend, jstr, jend, vbar(-1,-1,knew))

zt_avg1

ubar_knew,
vbar_knew

z_w, z_r,
hz,
hz_bak
huon,
hvom,
u_nrhs,
v_nrhs
we
u_nnew,
v_nnew,
huon, hvom

step3D_t omega_tile
exchange_w3d_tile(istr, iend, jstr, jend, we(-1,-1,0))

step3d_t_tile
exchange_r3d_tile(istr, iend, jstr, jend, t(-1,-1,1,nnew,itrc))

t3dmix_tile
exchange_r3d_tile(istr, iend, jstr, jend, t(-1,-1,1,nnew,itrc))

we t_nnew

t_nnew

Sum
(slow
/ fast)

10 / 3 19 / 0 3 / 0



8 Results

Still, the automatically generated code versions use less than half the number of halo
exchanges in the slow mode parts of a step while needing the same number in the fast
step (step2d).

8.1.2 Asynchronous Exchanges

In addition to the number of halo exchanges, their locations are also relevant. For
asynchronous halo exchanges, the positions of the operations that initialize or finalize a
halo exchange and their distances are of particular interest.

As explained before, these exchanges were implemented by determining a time
window during which they need to be executed and then initiating the exchange at
the start of this window and finalizing it at the end. Figures 8.1, 8.2, 8.3 and 8.4
illustrate kernels and communication operations in all four main parts of step. They
show all kernels (but no connectors) with the execution order indicated in red and the
communication operations as additional nodes in yellow and blue.

Section 5.5.2 described how parts of the code that are part of the fast step loop are
treated differently during analysis and code generation. The fast mode will, therefore,
be discussed separately in Section 8.1.2.

Slow Mode

The three step-sections that are part of the slow mode (pre_step3d, step3d_uv and step3d_t)
are all treated as singular sections. Looking at the communication patterns, it is evident
that in all three parts, most communication occurs clustered toward the end of each
section. Many halo exchanges are not scheduled because their dependency stencils
are growing too large but rather because all arrays with stencil extents greater than
zero must be exchanged at the end of each of the four sections. This causes their wait
operations to all be located at the end of a section, with exchange being initiated after
the execution of the last kernel with a write access on this variable. As a result, much
of the communication occurs in very short time windows, hindering the possibility of
truly asynchronous communication.

In fact, 11 of the 16 halo exchanges in this section occur with no kernels between their
beginning and end, effectively making them synchronous exchanges. Only four halo
exchanges involve a large number of kernels between their beginnings and ends.

Fast Mode and Asynchronous Exchanges in a Loop

Multiple time steps and communication between different sections (or instances of the
same section) at the boundaries were only considered for the fast steps using the step2d
subroutine.

As the BASIN test case defaults to using two halo layers, the fast step loop is considered
as a series of two instances of step2d here (linked by connectors to implement time index
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Kernel 0
IN: r0,itemp,cff1,t0,t,cff,tcoef,rho0,rhoa,n,z_w,rho1,rhos,nrhs

OUT: rho,cff1,cff,rhoa,rho1,rhos

Kernel 1
IN: u,hz,on_u,v,om_v,nrhs

OUT: hvom,huon

Kernel 11
IN: z_r,vonkar,cff,cdb_min,zob,cdb_max,z_w

OUT: cff,wrk

Kernel 23
IN: halfgrho,rho,onefifth,dz,dr,cff,onetwelfth,z_r,p

OUT: dz,dr,cff,cfr,p

Kernel 41
IN: hz,cff2,pm,we,hvom,cff,huon,pn,cff1,hz_bak

OUT: hz_half

Kernel 42
IN: cff2,lmmpi,istr,iend,mmmpi,gamma,t,hz,nadv,dt,hvom,jend,fe,

    cff,pn,huon,hz_bak,pm,nstp,jstr,work,indx,fx,cff1
OUT: imin,cff2,jmax,fe,work,jmin,cff,imax,fx,cff1,t

hvom
 irecv / isend

Kernel 37
IN: lmmpi,istr,iend,vfe,v,wrk1,mmmpi,gamma,hz,fomn,ufx,hvom,jend,

    ru,ufe,cffx,curvx,rv,huon,nrhs,jstr,cffe,vfx,curve,wrk2
OUT: wrk2,jmax,ufx,cffe,ufe,vfe,vfx,jmin,
cff,cffx,wrk1,imax,curve,curvx,imin,rv,ru

huon
 irecv / isend

Kernel 4
IN: 

OUT: stflx

Kernel 5
IN: 

OUT: stflx

Kernel 8
IN: 

OUT: btflx

Kernel 9
IN: 

OUT: btflx

Kernel 12
IN: u,cff,v,wrk,umag,nrhs

OUT: cff,bustr,umag

Kernel 13
IN: u,cff,v,wrk,umag,nrhs

OUT: cff,bvstr,umag

Kernel 20
IN: hz,we,wrk,wrk2,n

OUT: wrk,we,wrk2

Kernel 14
IN: u,cff,v,rdrg2,umag,nrhs

OUT: cff,bustr,umag

Kernel 15
IN: u,cff,v,rdrg2,umag,nrhs

OUT: cff,bvstr,umag

Kernel 16
IN: u,rdrg,nrhs

OUT: bustr

Kernel 17
IN: rdrg,v,nrhs

OUT: bvstr

Kernel 34
IN: bustr,ufe,pm,pn

OUT: ufx

Kernel 35
IN: ufe,bvstr,pm,pn

OUT: vfe

Kernel 24
IN: om_v,hz,on_u,p

OUT: rv,ru

Kernel 27
IN: 

OUT: ufe

Kernel 31
IN: hz,ufx,vfe,rv,ru

OUT: rv,ru

Kernel 28
IN: hz,ufe
OUT: ufe

Kernel 29
IN: sustr,ufe,pm,pn

OUT: ufx

Kernel 30
IN: ufe,pm,pn,svstr

OUT: vfe

Kernel 32
IN: 

OUT: ufe

Kernel 36
IN: hz,ufx,vfe,rv,ru

OUT: rv,ru

Kernel 33
IN: hz,ufe
OUT: ufe

Kernel 38
IN: hz,rufrc,fc,rvfrc,dc,cf,rv,ru

OUT: rufrc,fc,rvfrc,dc,cff,cf,rv,ru

Kernel 53
IN: u,rufrc,rvfrc,pn_v,vfx,vfe,dt,cff,pm_v,om_p,on_p,on_r,om_r,v,indx,cff1

OUT: u,rufrc,rvfrc,ufx,ufe,vfe,cff,v,vfx,cff1

Kernel 43
IN: u,hz,pm,gamma,fc,nstp,pn_v,dt,dc,pm_v,pn,hz_half,v,nnew,t

OUT: u,cff2,fc,cff1,dc,cff,v,cf,t

t__nnew
 irecv / isend

v__nnew
 irecv / isend

u__nnew
 irecv / isend

Kernel 50
IN: zt_avg1
OUT: zeta

v__indx
 irecv / isend

u__indx
 irecv / isend

u__nnew
 wait

u__indx
 wait

v__nnew
 wait

v__indx
 wait

t__nnew
 wait

huon
 wait

hvom
 wait

Figure 8.1: Kernels and communication operations in substep pre_step3d.



Kernel 0
IN: knew,h,zeta

OUT: hinv,zt_avg1

Kernel 1
IN: z_w0,hc,zt_avg1,hz,cff_w,cff1_r,hinv,h,cs_r,
     cff1_w,sc_w,z_r0,cs_w,zetatmp,cff_r,sc_r,z_w

OUT: z_w0,z_r,hz,cff_w,cff1_r,cff1_w,z_r0,zetatmp,cff_r,z_w,hz_bak

Kernel 3
IN: u,du_avg2,fc,dc,nrhs

OUT: u,huon,fc,dc

Kernel 7
IN: hz,we,wrk,wrk2,n

OUT: wrk,we,wrk2

Kernel 9
IN: r0,itemp,cff1,t0,t,cff,tcoef,rho0,rhoa,n,z_w,rho1,rhos,nrhs

OUT: rho,cff1,cff,rhoa,rho1,rhos

Kernel 11
IN: halfgrho,rho,onefifth,dz,dr,cff,onetwelfth,z_r,p

OUT: dz,dr,cff,cfr,p

Kernel 12
IN: om_v,hz,on_u,p

OUT: rv,ru

Kernel 16
IN: hz,ufe
OUT: ufe

Kernel 19
IN: hz,ufx,vfe,rv,ru

OUT: rv,ru

Kernel 21
IN: hz,ufe
OUT: ufe

Kernel 24
IN: hz,ufx,vfe,rv,ru

OUT: rv,ru

Kernel 25
IN: lmmpi,istr,iend,vfe,v,wrk1,mmmpi,gamma,hz,fomn,ufx,hvom,
          jend,ru,ufe,cffx,curvx,rv,huon,nrhs,jstr,cffe,vfx,curve,wrk2

OUT: wrk2,jmax,ufx,cffe,ufe,vfe,vfx,jmin,cff,cffx,wrk1,imax,curve,curvx,imin,rv,ru

Kernel 26
IN: hz,rufrc,fc,rvfrc,dc,cf,rv,ru

OUT: rufrc,fc,rvfrc,dc,cff,cf,rv,ru

Kernel 32
IN: hz,dv_avg1,nnew,fc,dt,dc,cf,cff,z_r,om_v,akv,n

OUT: u,fc,bc,dc,cff,aa,v,cf,cc

u__nrhs
 irecv / isend

Kernel 4
IN: dv_avg2,fc,dc,v,nrhs

OUT: hvom,v,fc,dc

Kernel 29
IN: u,pm,dc,cff,pn,v,nnew,rv,ru

OUT: u,v,dc

Kernel 33
IN: u,dv_avg2,dv_avg1,nnew,du_avg1,fc,dc,v,cf

OUT: u,fc,ubar,vbar,dc,hvom,v,cf,huon

v__nrhs
 irecv / isend

Kernel 15
IN: 

OUT: ufe

Kernel 17
IN: sustr,ufe,pm,pn

OUT: ufx

Kernel 18
IN: ufe,pm,pn,svstr

OUT: vfe

Kernel 20
IN: 

OUT: ufe

Kernel 22
IN: bustr,ufe,pm,pn

OUT: ufx

Kernel 23
IN: ufe,bvstr,pm,pn

OUT: vfe

hvom
 irecv / isend

huon
 irecv / isend

vbar__knew
 irecv / isend

ubar__knew
 irecv / isend

v__nnew
 irecv / isend

u__nnew
 irecv / isend

u__nnew
 wait

u__nrhs
 wait

v__nnew
 wait

v__nrhs
 wait

ubar__knew
 wait

vbar__knew
 wait

huon
 wait

hvom
 wait

Figure 8.2: ernels and communication operations in substep step3d_uv.



Kernel 1
IN: hz,we,wrk,wrk2,n

OUT: wrk,we,wrk2

Kernel 4
IN: lmmpi,istr,iend,mmmpi,t,nadv,dt,hvom,jend,
       fe,cff,pn,huon,hz_bak,pm,nstp,jstr,work,fx

OUT: imin,jmax,fe,work,jmin,cff,imax,fx,t

Kernel 5
IN: hz,nnew,fc,itemp,akt,dt,dc,cff,indx,z_r,cf,t

OUT: fc,dc,cff,indx,cf,t

Kernel 10
IN: hz,pmon_u,itrc,diff3v,nrhs,pm,cff1,fe,
        diff2,dt,pnom_v,pn,diff3u,fx,nnew,t

OUT: diff3v,fe,diff3u,fx,cff1,t

t__nnew
 irecv / isend

t__nnew
 wait

Figure 8.3: Kernels and communication operation in substep step3d_t.



zeta__knew
 wait (*)

Kernel 2
IN: cff2,kstp,h,kold,kbak,cff3,zeta,cff1

OUT: drhs

Next Iteration

ubar__knew
 wait (*)

Kernel 3
IN: cff2,on_u,ubar,kstp,kold,kbak,cff3,urhs,cff1,drhs

OUT: urhs,duon

Kernel 4
IN: cff2,vrhs,kstp,vbar,kold,kbak,om_v,cff3,cff1,drhs

OUT: dvom,vrhs

Kernel 16
IN: fomn,vrhs,cff,urhs,drhs

OUT: cff,ufx,vfe

vbar__knew
 wait (*)

Kernel 5
IN: pm,dtfast,kstp,duon,dvom,pn,zeta

OUT: zeta_new

Kernel 9
IN: cff2,dvom,duon

OUT: dv_avg2,dv_avg1,du_avg1,du_avg2

Kernel 11
IN: dv_avg2,cff2,du_avg2,duon,dvom

OUT: dv_avg2,du_avg2

Kernel 13
IN: urhs,duon,vrhs

OUT: ufx,vfx

Kernel 14
IN: dvom,vrhs,urhs

OUT: ufe,vfe

Kernel 27
IN: kstp,h,zeta

OUT: duon

Kernel 6
IN: zeta_new,cff2,cff0,kstp,ufx,ufe,rhoa,kold,kbak,cff3,zeta,cff1,rhos

OUT: ufx,ufe,vfe,vfx

Kernel 7
IN: h,zeta_new
OUT: dnew,zeta

Kernel 25
IN: zeta_new,kstp,ufx,ufe,rhoa,zeta,rhos

OUT: ufx,ufe,vfe,vfx

Kernel 12
IN: on_u,h,ufe,rhoa,vfe,ufx,cff,vfx,om_v

OUT: rubar,rvbar

zeta__knew
 irecv / isend

Kernel 8
IN: knew,cff1,zeta

OUT: zt_avg1

Kernel 10
IN: knew,zt_avg1,cff1,zeta

OUT: zt_avg1

Kernel 28
IN: rufrc,on_u,pm,du_avg1,ubar,kstp,rubar,dunew,cff1,duon,cff,pn,dnew,nnew

OUT: ubar,dunew,du_avg1

Kernel 29
IN: dv_avg1,pm,rvfrc,kstp,dvnew,vbar,cff1,duon,cff,om_v,pn,dnew,rvbar,nnew

OUT: dvnew,vbar,dv_avg1

Kernel 15
IN: rubar,ufx,ufe,vfe,vfx,rvbar

OUT: rubar,rvbar

Kernel 17
IN: rubar,ufx
OUT: rubar

Kernel 18
IN: rvbar,vfe
OUT: rvbar

Kernel 19
IN: rdrg,on_u,kstp,rubar,vbar,ubar,om_u,cff,rdrg2

OUT: cff,rubar

Kernel 20
IN: rdrg,on_v,ubar,kstp,vbar,cff,rdrg2,rvbar,om_v

OUT: cff,rvbar

Kernel 21
IN: rdrg,on_u,rubar,ubar,kstp,om_u

OUT: rubar

Kernel 22
IN: rdrg,on_v,kstp,vbar,rvbar,om_v

OUT: rvbar

Kernel 23
IN: rufrc,cff2,rufrc_bak,nstp,rubar,cff,cff3,cff1

OUT: cff,rufrc,rufrc_bak

Kernel 26
IN: on_u,rubar,h,ufe,rhoa,vfe,ufx,cff,vfx,rvbar,om_v

OUT: rubar,rvbar

Kernel 24
IN: cff2,rvfrc_bak,nstp,rvfrc,cff,cff3,rvbar,cff1

OUT: cff,rvfrc_bak,rvfrc

Kernel 34
IN: cff2,iminmpi,ubar,vbar,knew,jminmpi,cff1

OUT: cff2,vmax,jmax,cff,imax,cff1

ubar__knew
 irecv / isend

vbar__knew
 irecv / isend

ubar__knew
 wait (#)

vbar__knew
 wait (#)

zeta__knew
 wait (#)

Leave step2D
Continue to step3D_uv

Figure 8.4: Kernels and communication operations in substep step2d_thread.



8.2 Benchmarking Results

modifications before each fast step). The resulting communication schedule is visualized
in Figure 8.4.

In step2d, the communication window for all three variables begins and ends in
different loop iterations. The halo exchange is initiated during one iteration and
finalized in the next iteration.

Communication operations marked with (*) do not occur in the first iteration, while
those marked with (#) only occur in the final iteration of the fast loop. This ensures
that all halo exchanges initiated during the loop are completed before the loop ends.
It prevents the code from attempting to finalize a halo exchange, which has not yet
been initiated in its first iteration. They are implemented with conditional statements as
explained in Section. Therefore, all MPI_wait operations in step2d are conditional on the
index of the loop variable iic. As no halo exchanges have yet been initiated, the wait
operations at the start cannot happen in the first iteration, so they cannot be finalized.
The three waits in the end are there to finalize the communication after the last iteration.

8.2 Benchmarking Results

Counting the number of halo exchanges revealed that the automatically generated code
utilized roughly half the number of halo exchanges compared to the original code.
Consequently, one might assume that the performance in the benchmark would be
better, but the results do not support this assumption. Figure 8.5 and Figure 8.6 compare
the execution times of the three code versions on different problem sizes with different
numbers of MPI processes. It can be seen that, in general, the differences in execution
times between all three variants are minimal. For a given problem size and number
of MPI processes, there are hardly any noticeable differences in the mean, minimum,
and maximum execution times for the three code variants. The same is true for the
minimum and maximum execution times.

Figure 8.6 compares the runtimes for different problem sizes and shows a small
performance advantage of the variant using the reduced number of automatically
scheduled original synchronous exchanges over both the asynchronous auto-generated
exchanges and the synchronous baseline. However, even this difference is only noticable
for small problem sizes and higher numbers of MPI processes. There are no notable
differences for small numbers of MPI processes and the differences for any number of
processes tend to disappear with larger problem sizes because they are overshadowed
by other factors such as the general increase in computation needed for large problem
sizes.

The fact that the code using about half as many of the synchronous MPI exchanges
performs nearly identically to the original version shows that halo exchanges do not
significantly impact runtimes in this specific test case and context. This shows that
communication might not be a significant factor regarding runtime in this test case and
circumstances.
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Figure 8.5: Benchmarking results for the BASIN test case for different problem sizes and
numbers of MPI processes. The runtime is given as the average runtime of 8
simulations, with the minimum and maximum runtime indicated in black.
All runtimes are divided by the number of steps for easier comparison.



8.2 Benchmarking Results

Asynchronous Communication

Compared to the code version using auto-scheduled synchronous code exchanges,
the asynchronous communication performs slightly worse when using 16 or 32 MPI
processes (see Figure 8.6). A number of factors explain this. First, as the impact of
communication on runtime is already small, the asynchronous variant already has a
small improvement potential. Additionally as seen before, many of the ’asynchronous’
exchanges are scheduled in a way that makes them not actually asynchronous, further
decreasing the potential of the asynchronous communication to improve runtimes.
Furthermore, the asynchronous variant introduces a number of additional computational
operations (for example, extending the loop bounds of several kernel loops), possibly
increasing the runtime in this way.

Another, even bigger problem could be a general lack of actual asynchronous commu-
nication in the tested scenario. To actually communicate asynchronously the communi-
cation has to progress in the background while the main thread is doing computation.
Just using non-blocking MPI operations does not necessarily mean this is happening.
In such a situation, communication is primarily performed during explicit communica-
tion operations rather than in the background asynchronously. Consequently, in this
case most of the communication likely takes place during the wait operations, and
not asynchronously in the time window before them, again leading to synchronous
communication with no chance of overlapping communication and computation and
latency hiding.
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Figure 8.6: Benchmarking results for the BASIN test case for different problem sizes and
numbers of MPI processes. The runtime is given as the average runtime of
8 simulations. All runtimes are divided by the number of steps for easier
comparison.



9 Conclusion

The main goal of this thesis was to create an automated approach to generate code that
efficiently implements communication in the form of halo exchanges for CROCO. The
presented prototype effectively accomplishes this objective. Its approach uses PSyclone
and Poseidon to parse and analyze CROCO code, extracting essential elements such as
kernels and dependencies. It uses the algorithms described in Section 5.4 to trace stencils,
their sizes, and data dependencies across multiple kernels. This information can then
be used to identify when which halo exchanges are necessary and to determine a time
window for asynchronous communication. Navigating the complexities of the time step
loop was a significant challenge, but the approach effectively addressed some of these
issues. The prototype can successfully analyze CROCO’s BASIN test case and generate
code implementing necessary communication operations, including both synchronous
exchanges using CROCO’s original implementation and asynchronous exchanges.

However, despite significantly reducing the number of halo exchanges by about 50%,
benchmarking results showed only marginal performance improvements. This suggests
that, in this specific context, halo exchanges did not significantly impact runtime.

The introduction of asynchronous communication, intended to enhance performance
by hiding communication latency, gave worse results in many scenarios, not providing a
performance advantage and occasionally even leading to slightly worse performance.
This outcome may be attributed to the fact that the generated communication schedule
was not truly asynchronous, with many operations clustering at the end of substeps.
Furthermore, the lack of support for asynchronous for progression in MPI the used MPI
implementation may not have permitted any asynchronous communication in this case,
causing this outcome.

Nevertheless, the presented approach effectively automates the analysis of CROCO
code and the modification of code by generating and inserting MPI code for necessary
halo exchanges. This addresses some of the problems described in the thesis, making it
easier for developers or domain experts to write CROCO code with parallelization using
MPI without the need to handle communication manually. It also has the potential
to reduce the number of exchange operations in certain cases, potentially improving
performance.

All in all, the presented approach is able to automatically analyze CROCO code and
modify it by generating and inserting MPI code that implements the necessary halo
exchanges using MPI. This is useful and does solve some of the problems stated at the
beginning of this thesis. It allows developers (or even domain experts) to write code for
CROCO without having to worry about handling communication, as the code can be
created automatically. It can also be used - at least in some (probably the more simple)
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9 Conclusion

cases (like the BASIN case) to reduce the number of exchange operations, potentially
increasing performance.

The implemented asynchronous communication did not lead to higher performance
in this case but could potentially allow for latency hiding in other cases, especially with
some future changes.

9.1 Future Work

An immediate goal would, therefore, be to ensure that asynchronous communication
actually works as intended. This involves addressing the problem of progressive
asynchronous communication in mpi. This can be approached by using a different MPI
implementation with supporting hardware.

The MPI implementation of the communication could be improved by using derived
datatypes. This would avoid having to copy the data into a temporary buffer before
sending and from the buffer to the target array after reception and, therefore, decrease
overheads, potentially improving performance.

Addressing the problems with modeling the time stepping would also help to improve
asynchronous communication if it enables analysis without stepping every step into
multiple substeps. To achieve this, clearer software design in CROCO, particularly
regarding time indexing, is necessary. This should allow for easier and better modeling
of the time stepping loops which in turn should make it possible to analyze at least
entire time steps or even multiple time steps at once without splitting.
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