
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Performance Assessment of using OpenCL
on FPGA Systems for ODE Solvers

Patrick Tobias Haft

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Performance Assessment of using OpenCL
on FPGA Systems for ODE Solvers

Leistungsbewertung von OpenCL auf
FPGA Systemen für ODE Löser

Author: Patrick Tobias Haft
Supervisor: Prof. Dr. Martin Schulz
Advisor: Dr. Martin Schreiber
Submission Date: 15.04.2021

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.04.2021 Patrick Tobias Haft

Acknowledgments

First of all, I want to thank my advisor, Dr. Martin Schreiber, for his outstanding
support during the thesis. He was always available for any questions and provided me
important feedback throughout my work.

Furthermore, I would like to thank Prof. Dr. Martin Schulz, who made it possi-
ble to write my thesis at the Chair of Computer Architecture and Parallel Systems at
TUM.

A special word of thanks goes to the LMU and, in particular, to Pascal Jungblut,
who provided me access to a FPGA system. Without this support, this thesis would
not have been possible.

Abstract

Parameter optimization is a common task in various fields such as computational
biology. In these scientific fields, optimization can be, e.g. based on ordinary differential
equations with the computational task getting increasingly computation-intensive for
increasing complexity of ODE and the parameters to determine. Hence, this raises
requirements for an efficient treatment on high-performance computing architectures.
In HPC, it is essential, besides an efficient implementation, to choose the best fitting
architecture for each problem. Latest research has shown that FPGAs are a better
accelerating device than GPUs or multi-core CPUs for specific issues. Therefore, this
thesis deals with the implementation and assessment of ODE solvers optimized for
FPGAs.

Since FPGAs are relatively new in HPC, the thesis first explains the essential com-
ponents of FPGAs and how to program them. Subsequently, the thesis expounds on
the FPGA implementation of an efficient ODE solver and how it integrates into an
automatic code generation to support different ODE systems. Furthermore, it illustrates
the effect of the different optimizations on hardware utilization and execution time.
The results are finally compared to those of CPUs and GPUs. The comparison reveals
that for small problem sizes, the FPGA performs better than the CPU and almost as
good as the GPU. For larger problems, both other architectures outperform the FPGA.
The results give a first tendency when which architecture fits best. Consequently, this
thesis builds a good foundation for further research about the usability of FPGAs for
ODE solvers. This thesis did not take energy efficiency into account.

iv

Glossary

ALM Adaptive Logic Modules

ALUT Adaptive Look-up-Table

AOC Altera Offline Compiler

CLB Configurable Logic Block

DDR4-SDRAM Double Data Rate 4 Synchronous Dynamic Random Access Memory

DSP Digital Signal Processing element

FPGA Field Programmable Gate Array

HBM2 High-Bandwidth Memory 2

HDL Hardware Description Language

HPC High-Performance Computing

IP Intellectual Properties

IVP Initial Value Problem

LUT Look-up-Table

RAM Random Access memory

ODE Ordinary Differential Equation

OpenCL Open Computing Language

PCIe Peripheral Component Interconnect Express

SIMD Single Instruction Multiple Data

TFLOPS Tera Floating Point Operations Per Second

TIDOWA Time Integration DOmain-specific Wicked Awesome stuff

TMACS Tera Multiply-Accumulate Instructions per Second

v

Contents

Acknowledgments iii

Abstract iv

Glossary v

1 Introduction 1
1.1 ODEs, Integration and IVPs . 1
1.2 Goal of the thesis: FPGA relevance for ODE Solvers 3

2 FPGA Systems 5
2.1 Introduction to FPGA Systems . 5

2.1.1 Architecture and Basic Components 5
2.1.2 Comparison with CPU, GPU and ASIC 9

2.2 Related Work: FPGA in HPC . 10
2.3 Intel vs. Xilinx FPGAs . 12

2.3.1 Device Family Comparison . 12
2.3.2 Stratix 10 vs. Virtex UltraScale+ 12
2.3.3 Design Decision for Intel . 18

2.4 Programmability of FPGA Systems . 18
2.4.1 OpenCL Architecture . 18
2.4.2 Hardware Description Languages 21
2.4.3 Reasons for Design-Decision using OpenCL 22

2.5 FPGA Development Tools and Design Example 22
2.5.1 Work Flow of Intel FPGA SDK for OpenCL 22
2.5.2 Intel Matrix Multiplication . 24

3 TIDOWA 26
3.1 Discretisation . 26
3.2 Automatic Code Generation . 26
3.3 Compilation . 27
3.4 Execution . 27

vi

Contents

4 FPGA in TIDOWA 28
4.1 Host Side Implementation . 28

4.1.1 OpenCL Initialisation . 28
4.1.2 Start OpenCL Kernel Execution 28
4.1.3 Finish OpenCL . 29

4.2 Kernel Side Implementation . 29
4.2.1 Kernel Function . 29
4.2.2 Index Initialisation . 30
4.2.3 Array and Variable Initialisation 30
4.2.4 Main Calculation Loop . 30
4.2.5 Result Write-Back to Global Memory 30

4.3 Kernel optimization Techniques . 30
4.3.1 Loop unrolling . 31
4.3.2 Specifying required or maximal Work-Group Size 31
4.3.3 Specifying Compute Units . 32
4.3.4 Specifying SIMD Work-Items . 32
4.3.5 Floating-Point Optimization . 33
4.3.6 Avoid Pointer Aliasing . 33

4.4 Integration of OpenCL for FPGA into TIDOWA 33
4.4.1 Automatic Code Generation . 34
4.4.2 Compilation . 34
4.4.3 Execution . 34
4.4.4 Automatic FPGA Optimization . 34

5 Evaluations of Optimizations based on Kernel Reports 36
5.1 Default Optimization Techniques . 36

5.1.1 Default . 36
5.1.2 Static Loop Unrolling . 37
5.1.3 Integration Loop Unrolling . 37
5.1.4 Kernel Attributes . 37
5.1.5 Floating-Point Optimization . 37

5.2 Combined Optimization Techniques . 38
5.2.1 Maximal Vectorization . 38
5.2.2 Vectorization and Compute Units 38
5.2.3 Unrolling Integration Loop with Floating-Point Optimization . . 38
5.2.4 Vectorization, Compute Units and Unrolling 38

5.3 Kernel Report Comparison . 39

vii

Contents

6 Performance Testing 50
6.1 Utilized FPGA System . 50
6.2 Testing Procedure . 50
6.3 Test Cases . 51
6.4 Results . 51
6.5 Discussion . 56

7 Cross-Architecture Comparison 58
7.1 CPU, GPU Description . 58
7.2 Results . 58
7.3 Discussion . 61

7.3.1 Deviations . 61
7.3.2 Performance . 61

8 Further Research 63
8.1 Optimizing Memory Access . 63
8.2 NDRange vs. Single Work-Item . 63
8.3 Fixed- vs. Floating-Point Calculation . 63
8.4 Detailed Performance Profiling . 64

9 Conclusion 65

Bibliography 66

viii

1 Introduction

In biology and other scientific fields, the behavior of a system is often modeled in
terms of changes over time. An example is the feedback loop of the human eye
movement following an moving object in [2]. These models typically contain a number
of parameters which determine temporal changes. Small changes in the parameters
of a model may result in a completely different behavior. In experiments, a number
of measurements of the system exist, and from those observations the values of the
parameters of the underlying model need to be found. The calculation of the best
fitting parameter values is called parameter optimization [26]. It is a task commonly
used in computational science. Because of the sensitive behavior of many systems with
respect to small changes in parameter values, parameter optimization needs to be very
precise and is computationally intensive. It requires highly optimized implementations.
Therefore, it is important to find the best performing hardware architecture for each
problem.

1.1 ODEs, Integration and IVPs

For a mathematical representation of the previously mentioned models, systems of
differential equation are commonly used. A differential equation defines the relation
between a unknown function and its derivatives. Beside the derivatives a differential
equation also contains an independent variable, for example t ∈ R as the time. This
system would describe the change of the system over time. There are two types of
differential equation, ordinary and partial. PDE contain multiple of the independent
variables, ordinary only one. This thesis will only deal with ODE. An ODE is written
mathematically:

dy(t)
dt

= f (t, y(t)) abbreviated
dy
dt

= f (t, y) [26] (1.1)

while f is a known function. The linear part of an Ordinary Differential Equation (ODE)
can also be described as:

dy(t)
dt

= λy(t)[33] (1.2)

1

1 Introduction

Therefore, λ is a parameter of the ODE. ODE can be extended to systems of ODEs.
They are describe as the following:

dy1

dt
= f1(t, y1, y2, ..., yn)

dy2

dt
= f2(t, y1, y2, ..., yn)

... = ...
dyn

dt
= fn(t, y1, y2, ..., yn)

(1.3)

each function yi is now also dependent on the other functions [26]. Furthermore, a
system of ODEs has multiple parameters λ. A simple example for an liner ODE system
is the oscillatory system [33]:

du(t)
dt

= λu(t)− λū (1.4)

This ODE system is used for all performance tests in this thesis.

Integration

For simple differential equations the solution of a ODE can be found analytical by
separation of variables [6]:

For the ODE:
dy
dt

= t · y(t) a solution can be found as follows.

1
y(t)
· dy

dt
= t

1
y
· dy = t · dt∫ y

y0

1
η
· dη =

∫ t

t0

τ · dτ

ln y− ln y0 =
t2

2
− t2

0
2

y(t) = y0 · e
t2
2 · e−

t20
2

(1.5)

For more complex equations or ODE systems this solution approach is not feasible.
Therefore, the solution needs to be found numerically. An example for a solution
approach is Runge-Kutta 4 integration method [6]. This integration method is used
exclusively for all implementations in this thesis.

2

1 Introduction

Initial Value Problem

An Initial Value Problem (IVP) consists of a ODE system dy
dt = f (t, y) and an vector

y0 = (y0,1, y0,2, ..., y0,n). The i-te element of the vector y is the starting value for each
function. Therefore:

∀i ∈ {1, 2, ..., n} : yi(0) = y0,i (1.6)

Consequently:
y(0) = y0 (1.7)

The goal is to find all solution of y with a defined set of parameters λ for a fixed
number of integration steps k ∈ Z+

0 at all points t = k · δt. This solution for one IVP can
be found numerically by an ODE solver. The parameter optimization uses the results
for a large number of IVPs with different parameters to find the best fitting value for a
given measurement.

1.2 Goal of the thesis: FPGA relevance for ODE Solvers

This thesis focuses mainly on the Open Computing Language (OpenCL) code genera-
tion to implement efficient ODE solvers for Field Programmable Gate Arrays (FPGAs).
It’s a continuation of the work of Severin Bals’s bachelor thesis "Development of a
domain-specific language for the efficient time integration of ODEs" [3], Anna Mitter-
meier’s project during her master studies at TUM, and Taylor Lei’s bachelor thesis "Op-
timization of Parametrized High-Dimensional ODE Simulation" [26]. They developed a
system named Time Integration DOmain-specific Wicked Awesome stuff (TIDOWA)
at the Technical University of Munich. During this thesis TIDOWA was extended to
a continuous integration system by Hoang-Trieu Tong. The TIDOWA system consists
of two main parts. The first one is the general numerical time integration part that
automatically generates ODE solver code for C, OpenMP, OpenCL, and CUDA based
on systems of parametrized ODEs. These ODEs are represented in a domain-specific
language. The second part is the generic parameter optimization. It extends the time
integration part to a backend to call the ODE solvers for different parameter sets. There-
fore, the TIDOWA system can optimize the parameters for any given ODE system and
measurement results. The key fact is that it is using only the computational results of
the IVPs. Therefore, it is constrained to black-box optimization [26]. For a good fitting
result of the parameter set, the optimizer needs the solution of many IVPs. Therefore
the performance critical task is the solving of the ODE System for multiple parameter
sets. In addition to efficient and highly parallelized execution, it is necessary to run
different ODE systems on the best suitable architecture or, in other words, use the best
fitting part of a heterogeneous architecture. The TIDOWA system already supports

3

1 Introduction

code generation and execution for the CPU with C, OpenMP, OpenCL, and GPU with
CUDA and OpenCL. This thesis aims to extend the hardware coverage by adding
OpenCL FPGA support to TIDOWA. Furthermore, it tests the relevance of this new
architecture for ODE solvers by comparing the execution times of the FPGA to those of
the GPU and CPU.

4

2 FPGA Systems

The primary focus of this thesis is to research how FPGAs perform relative to CPUs and
GPUs for solving ODEs. Therefore, this chapter gives a brief introduction on FPGAs. In
the following the essential building components of FPGAs are explained. Further, we
will compare two of the most prominent FPGA vendors to select a sufficient suitable
broad for the thesis. In addition, this chapter shows how FPGAs are programmed and
why OpenCL and not a hardware description language is used for the implementation.
Finally, we will take a brief look at compilation and execution in case of a simple
OpenCL FPGA design example. With this design example, a better understanding
is conveyed of how to work with FPGAs. This will help to understand the main
differences in areas like compilation and execution.

2.1 Introduction to FPGA Systems

To better understand what FPGA Systems are, this chapter provides basic knowledge
about the fundamental hardware architecture and the resulting advantages and disad-
vantages as compared to the more commonly used hardware systems like CPU and
GPU. This knowledge is necessary to get a good comprehension of the optimization
applied to the OpenCL ODE solver.

2.1.1 Architecture and Basic Components

A FPGA consists of three main parts. The first one is the Configurable Logic Block (CLB).
It is the smallest compute element of the FPGA, which can be programmed to perform
different logic operations on the input data, like NAND XOR and AND. A CLB is built
from a Look-up-Table (LUT), a multiplexer, and a register. Modern FPGAs contain
several hundred thousand of CLBs [7] [5] [28].
To create more complex functions, these CLBs are connected by the Programmable
Interconnects, which comprise of wire segments terminating in a programmable switch
within a switch box. The routing switches can be activated to create more significant
data paths between the CLBs [4] [7] [5].
The I/O Blocks form the last central part. They are responsible for connecting the inner
components to the external hardware to pass data for computation to the FPGA [7] [5].

5

2 FPGA Systems

For a better pictorial representation of the three main parts, take a look at Figure 2.1.
To increase the performance or reduce the area usage of a complex FPGA design, the
vendors introduced Intellectual Properties (IP) to perform specific operations. For exam-
ple Digital Signal Processing elements (DSPs) are dedicated units for multiplication. They
are able to perform an 18x25 bit multiplication in one clock cycle. Further on, a DSP
contains an accumulator, which enables optimized multiply-accumulation operations
[4] [28] [27]. Such hardware structure is, for instance, useful for computational intensive
applications like matrix-matrix multiplication to multiply the row and column elements
and sum up the results. Because of their good ability to perform floating-point opera-
tions, theses IPs come to use for the ODE solvers. This becomes clear in the diagrams
of the used hardware in Chapter 5.
In addition, memory blocks are built into the gate array architecture to store values tight
to the design. The FPGA does not need to store every value on the global memory or
in logic cells, which reduces the latency and the area usage [27] [45]. Moreover, such
IPs offer space for hardware optimization. For example, Intel invented the “double
pumping” configuration for the memory blocks, whereby the memory is clocked twice
as high compared to the rest of the design. This unlocks two read or write operations
per block and clock cycle of the main part [22]. Furthermore, there exist FPGA boards
with IPs like Ethernet connections to communicated directly to external hardware and
not through main memory and the CPU, enabling significant latency reduction [27]
[12].

Newer FPGAs extend the CLBs to Adaptive Logic Modules (ALM). These kinds of logic
modules can implement more than one logic function. An ALM in an Intel Stratix 10
FPGA consists of two adaptive LUTs, two full-bit adders, and four registers. Various
types of functions can be implemented by the two Adaptive Look-up-Tables (ALUTs)
with up to eight inputs. Due to the adaptability, these ALM are completely backward
compatible to the four input LUTs architectures implemented in previous generations
of FPGAs [45] [25].

6

2 FPGA Systems

Figure 2.1: FPGA Basic Architecture: The right side shows an overview of the FPGA
components and how they are connected to each other. The black rectangles
are the Logic Modules, which are connected by the blue programmable
interconnect. These array structures are interrupted by the green DSP blocks
and the orange memory bank blocks also connected to the routing [4] [7]
[28] [5] [45].

7

2 FPGA Systems

Figure 2.2: High-Level Block Diagram of Intel Stratix 10 Adaptive Logic Module: The
left shows the adaptive LUTs. It consists internally of four 4-LUTs, which
are feed by the eight inputs. The results can be passed to two full-bit adders
or bypass the adders and send directly to the resisters or multiplexers. The
outputs of the multiplexers are reconnected to the general routing [45] [25].

8

2 FPGA Systems

2.1.2 Comparison with CPU, GPU and ASIC

Central Processing Unit (CPU): Compared to CPUs, FPGAs have much lower latency.
External hardware can be directly integrated into the FPGA and does not need to com-
municate with the compute unit via a generic bus system like Peripheral Component
Interconnect Express (PCIe). Furthermore, latency is much more deterministic and does
not depend on an operating system to release computing resources [31]. Overall com-
pute power and energy efficiency are also advantages of FPGAs [37]. These advantages
become evident in the results of the related work in Section 2.2. The architecture of
FPGAs is also more flexible as compared to CPUs. Therefore, parallelism can not only
be archived by multiple compute units. FPGAs are also able to supplement a pipelining
computation. Consequently, FPGAs have a finer granularity in parallelization.
The most obvious advantage of CPUs is the programmability. CPUs support a wide
range of programming languages, in contrast to FPGA, which can only be programmed
by hardware description languages, OpenCL or C/C++. Therefore, the development
time for CPU applications is drastically lower. The fixed CPU architecture also has a
big advantage when it comes to compiling. Already the simplest FPGA designs needs
hours for a successful compilation. In contrast, CPU compilation is finished in most
cases in a matter of seconds.
Application-Specific Integrated Circuit (ASIC): The main difference between these
two device architectures is that the logic of FPGA can be reprogrammed, while that of
ASIC remains permanently wired. If you need a huge amount of devices with the exact
same logic, which does not need to be changeable, ASICs are always more cost efficient
and consume less power. Nevertheless, for a single device application or application
that needs to reprogram the logic of the device, FPGA is the only suitable option [5].
Graphics Processing Unit (GPU): In terms of the core floating-point compute power,
GPUs still have a clear advantage. The recently released NVIDIA GeForce RTX 3090
has 35.58 Tera Floating Point Operations Per Second (TFLOPS) for single-precision and
therefore almost three times more floating-point performance than the recently released
Intel Agilex F-Series FPGA with only 12.8 TFLOPS. Also, memory bandwidth is a
huge advantage for GPUs because it is integrated into the board, while most FPGAs
use external memory like Double Data Rate 4 Synchronous Dynamic Random Access
Memory (DDR4-SDRAM) connected by PCIe [34] [8]. For applications with small
memory allocations, the FPGAs have a big advantage. Modern FPGAs contain several
thousand M20K memory blocks that are integrated into the array structure. Thus the
largest systems have more than 250 MB of on-chip memory [8]. When it comes to power
efficiency, FPGAs also have a significant advantage. This can be observed in the results
of the related work in Section 2.2. Due to different threading models, FPGAs perform
better for applications with large branching. FPGAs use a pipelining model, while

9

2 FPGA Systems

GPUs execute different threads in parallel on multiple compute units. The performance
can be significantly reduced if different threads execute different branches. For the
pipelining architecture, this is not a huge performance drawback [30]. Detailed results
for the different performance tests for execution time and power efficiency is discussed
in 2.2.

2.2 Related Work: FPGA in HPC

In the last decade, High-Performance Computing (HPC) commonly uses GPUs as
accelerating devices to perform computationally intensive tasks [36]. Thanks to the
application optimized hardware in modern FPGA systems, especially the larger on-
chip memory, immense numbers of adaptive logic modules, and DSPs, FPGAs come
closer to GPUs’ core compute performance [32]. FPGAs’ significant advantage over
GPUs is the tremendous less power consumption and, therefore, better performance in
GFLOPS/Watt [30]. The latest research shows how well FPGAs perform in comparison
to GPUs. In the following, we will take a look at the results of some papers.

The paper [45] provides results of two performance evaluations for FPGAS in compari-
son to CPUs and GPUs. The first part discusses the implementation and optimization
of Rodinia benchmarks for FPGA programmed in OpenCL. They show different op-
timization levels and compare the performance and power efficiency results to the
latest implementation for CPUs and GPUs. The second evaluation discusses high-
performance stencil computation on FPGA also using OpenCL. The results are again
compared for performance and power efficiency of CPUs and GPUs. It should be
mentioned that for the stencil computation, significantly more time was used for the
implementation and optimization. For the FPGA test, an Intel Stratix V and Arria 10
were used. To get a fair comparison CPUs and GPUs of the same age were utilized.
Intel i7-3930K and E5-2650 v3 for CPU tests and Nvidia K20X and GTX 980 Ti for
GPU tests. The results show that CPUs are outperformed in every HPC benchmark
by the both FPGAs. Furthermore, CPUs have even worse power efficiency. In one of
the power efficiency tests, the Stratix V FPGA performs 16.7 times better than the Intel
i7-3930K. For the GPU comparison, the FPGAs do not compete that well. Except in one
case, the same age GPU produces better results than the FPGAs in every performance
benchmark. Nevertheless, FPGAs have an advantage regarding power efficiency. The
FPGAs perform clearly better than the power hungry GPUs in nearly every power
consumption benchmark.
In the highly optimized stencil computation, FPGAs showed their real potential. They
achieved up to 700 GFLOP/s in 2D stencil computation on the Intel Arria 10 GX 1150

10

2 FPGA Systems

board, nearly 50% of the maximal compute power. With these results, FPGAs are
competitive to CPUs and even GPU devices of the same age.

The authors of [32] also researched the usability of FPGA acceleration for HPC com-
pared to CPUs and GPUs. The scenario for their tests was a 3D Fast Fourier Transforma-
tion. An Intel Aria 10, Intel Xeon E5-2680v4, and an NVIDIA TESLA P100 device were
used for the FPGA, CPU, and GPU execution. The results showed that the OpenCL
total execution time archived an average speedup of 29 compared to the CPU and 4.1
compared to the GPU execution.

In [30], the authors evaluated the performance of FPGA against GPUs for three different
design test cases. For the FPGA execution, a Xilinx Virtex-7 690t was used, and for the
GPUs, two Nvidia devices were used, the GTX960 and Quadro K4200. The GPU kernels
were all written in OpenCL. For the FPGAs, OpenCL was used with the Xilinx SDAccel
and Vivado HLS high-level design tools, except for one algorithm. K-Nearest Neighbor
(KNN) forms the first test case. Two implementation variations were implemented
for this algorithm. The first one only uses the accelerating devices for the distance
calculation, while the nearest neighbor is computed on the CPU. In contrast to that,
the second version used the FPGA and GPU for both tasks by calling two kernels com-
municating to each other. The first evaluation results showed a clear advantage for the
GPUs in terms of execution time due to the significantly higher bandwidth to memory.
This observation changed for the second implementation. While the GPU needs to use
the slower external memory for kernel communication, the FPGA can utilize on-chip
memory and therefore eliminates the external memory access. In both cases, the FPGA
out performs the GPUs in power consumption. The power consumption difference is
more drastic for the second case because the off-chip memory access consumes the
major part of the used energy in the first variant.
The second test algorithm was the Monte Carlo method for financial models. The
authors explain that C/C++ with HLS-specific pragmas were used for this test case
because of the efficient implementation of trigonometric functions. In every model, the
FPGA beat GPUs in terms of execution time as well as power consumption.
For the last test suite, the bitonic sorting algorithm was utilized. NVIDIA provided
the source code for this algorithm, which was optimized for GPU execution. The
application was executed on the FPGA with and without FPGA specific directives.
For the not optimized version, the FPGA clearly performed worse than both GPUs in
execution time and even used more energy than the GTX960. With the FPGA specific
directives, the Virtex-7 was able to beat the K420 and performed just as well as the
GTX960. Furthermore, for the optimized implementation, the FPGA has an advantage
in power consumption.

11

2 FPGA Systems

For further related research, see [44], [37], and [35].

2.3 Intel vs. Xilinx FPGAs

Two of the largest FPGA manufactures are Intel (originally Altera) and Xilinx (currently
taken over by AMD). To find an appropriate board for the purpose of this thesis, those
vendors are compared. First of all the different product divisions are shown. Secondly,
for a better understanding of the key data sheet values for FPGAs and for choosing
the right system, one Intel and one Xilinx system with different versions are compared.
Finally, the reasons why the Intel devices and their programming tools were chosen is
explained.

2.3.1 Device Family Comparison

Both vendor’s product range can be divided into three categories. Low performance
or cost optimized broads, which are the entry level models. For Xilinx, this includes
Spartan-7, Spartan-6, Artix-7, Zynq-7000. Intel overs in this category the Cyclone Series
and the MAX Series. Such systems are build of several ten thousand up to 400 thousand
logic elements and several hundred DSPs [9] [39]. The second category is the mid range
or best performance per cost devices like Kintex-7 and Virtex-7 for Xilinx, and the Arria
Series for Intel. Those contain up to over a million logic cells and over a thousand DSPs
[9] [39]. Intel, with the Stratix and Agilex Series and Xilinx with Kintex and Virtex, both
in the UltraScale and UltraScale+ version, represent the last category: high-performance
system. Those FPGAs belong to the best the market currently offers. The most powerful
systems of these categories are capable of computing over 10 single-precision TFLOPS
[9] [39]. The comparison uses the Intel Stratix 10 and the Xilinx Virtex UltraScale+.
Though Stratix 10 is not the best performing Intel system because Agilex is built on
newer transistor size and contains more logic elements and DSPs. However, Agilex got
just released during the thesis, and currently, not all versions with their full data sheet
are available.

2.3.2 Stratix 10 vs. Virtex UltraScale+

For each device family of the vendors, the comparison is split into two main parts,
and each of them in several subsections for the different versions. The first central
part is a comparison between the features that different models support. It will also
be explained for what kind of application each model is optimized. The second part
is a pure comparison of the data sheets provided by the manufacturers. It should be
previously mentioned that all subversion of Stratix 10 and Virtex UltraScale+ (except

12

2 FPGA Systems

VU19P) can be configured in different versions, like the number of DSPs or logic
elements. All referenced values are always the maximized configurations. For detailed
information about a specific model configuration take look at the data sheets at the
vendor’s web page.

Stratix 10 Features

The feature supported by all Stratix 10 devices is that they are all built based on the Intel
Hyperflex FPGA architecture. This architecture’s centerpiece is the “register everywhere”
design that adds Hyper-Registers to the interconnect routing. These registers are
distinct from the conventional registers that are built into adaptive logic modules. This
allows bypassing every routing segment in the FPGA core and functional blocks like
ALMs, embedded memory blocks, and DSPs [12]. Through this new hardware design,
two optimizations are available:

• Hyper-Retiming: eliminates critical paths by using registers in the interconnect
and not the one located in the ALMs, which allows running at a faster clock
frequency.

• Hyper-Pipelining: adds additional pipeline stages between ALMs to eliminate
long routing delays.

According to Intel, Stratix 10 with Hyperflex can achieve two times the performance and
up to 70% lower power consumption at the same performance compared to previous
high performance FPGA Stratix V [1].

Furthermore, all Stratix 10 boards contain a Secure Device Manager, which is the
entry point for all JTAG commands and data for device configuration. The SDM block
manages all security and configuration functions while not affecting the user design
[12]. Stratix 10 boards also support new transceiver technology, capable of up to 28.3
GB/s across the backplane. Besides, all of the variations offer parallel memory support
up to 2,666 Mbps for DDR4-SDRAM. Moreover, they can use a wide range of external
memory protocols [12]:

• hard memory controllers: DDR4-SDRAM, DDR3/ DDR3L, LPDDR3

• soft controllers: RLDRAM 3, Intel Optane DC persistent memory, QDR II+ / QDR
II + Xtreme / QDR IV

Intel Stratix 10 FPGAs Specific Variation Features

The GX version is optimized for applications that require the highest transceiver band-
width and core fabric performance [13] [14].

13

2 FPGA Systems

The system on a chip devices of the Stratix 10 family is the SX Soc, which contains
a quad-core ARM Cortex-A53 MPCore hard processor system, therefore the best fit-
ting FPGA for embedded applications. The processor supports several features like
hardware virtualization, system management, monitoring capabilities, acceleration
preprocessing, 64-bit architecture (ARMv8), 32-bit execution mode, and has board
support packages for popular operating systems like Linux [18] [14].
The board that meets the bandwidth demands for 5G communication, cloud computing,
and network virtualization is the TX FPGA. It is capable of up to 57.8 GB/s in up
to 144 transceiver lanes and contains an Ethernet hard IP solution. Furthermore, it is
optimized for networking infrastructures that support 50GE, 100GE, 200GE, and 400GE
applications, and a quad-core ARM Cortex-A53 MPCore hard processor system can be
integrated into the FPGA [19] [20].
The MX version to Intel Startix 10 is the best accelerator for HPC, data center, and
virtual networking functions. It integrates two High-Bandwidth Memory 2 (HBM2)
with a memory bandwidth of up to 512 GB/s. The DRAM is physically connected to
the FPGA using Intel EMIB. Through the significantly shorter interconnect between
the core fabric and the memory, the FPGA uses a lower system power, resulting in an
optimum performance per watt [16] [15].
With the Intel Ultra Path Interconnect, a direct coherent connection to Intel Xeon Scal-
able processors, the Intel Stratix 10 DX FPGA fits the best for designs, which need
high bandwidth. In addition, it is the only Stratix 10 version supporting PCI Express
Gen4x16 with up to 16 GT/s. Moreover, it supports Intel Optane persistent memory
and has the option to built-in a quad-core ARM Cortex-A53 MPCore hard processor
system or 8 GB integrated HBM2 DRAM with 512 GB/s [10] [11].
Intel Stratix 10 NX is the optimized FPGA for AI applications that require high band-
width and low latency. Its AI Tensor blocks are tuned for matrix-matrix or vector-matrix
multiplications, commonly used in areas like Machine Learning. These optimized
hardware blocks have fifteen times more INT8 throughput than a standard DSP block.
Additionally, the enlarged integrated memory stacks allow to store persisted AI models
in the on-chip memory, enabling lower latency with larger memory bandwidth and
therefore preventing memory bound performance challenges [17].

Xilinx VIRTEX UltraSCALE+ FPGA Specific Variation Features

In this Section we compare directly the version specific features, because unlike Stratix
10 Xilinx VIRTEX UltraSCALE+ does not share some basic features over the hole lineup.
The first version we take a closer look at is the base VIRTEX UltraSCALE+ with no name
extension. It supports DDR4-SDRAM with up to 2,666 Mb/s and can be configured

14

2 FPGA Systems

with up to 500 Mb of on-chip memory. The maximal amount of transceivers integrated
into the board is 128, which runs at a speed of 32,75 GB/s. In addition, this device
supports PCI Express Gen3 x16. It is the best Xilinx board in terms of optimized perfor-
mance in fixed and floating-point computation with up to 22 Tera Multiply-Accumulate
Instructions per Second (TMACS) [40].
The second board, which is mostly the Xilinx equivalent to Intel Stratix 10 MX and
DX, is named Xilinx Virtex UltraScale+ HBM. It supports, like the two Intel FPGAs,
High-Bandwidth Memory Gen2, at a data rate of 460 GB/s. Furthermore, the HBM
version has build-in transceivers with 58 GB/s and PCIe Gen4 x8 connection with CCIX
support [42].
The next variant in the lineup is the 58G, which is optimized for applications that
require high connection speed from external components to the core fabric. Therefore,
it supports 48 transceivers at 58 GB/s and 32 at 32.75 GB/s. It has integrated blocks for
PCIe Gen3 x16 in all devices and PICe Gen4 x8 with CCIX in selected versions [41].
VU19P is the model of Virtex UltraScale+ with the highest amount of built-in logic ele-
ments and, consequently best fitting board for prototyping and emulation of advanced
ASIC and SoC designs [43].

15

2 FPGA Systems
Ve

rs
io

n
m

ax
L

og
ic

E
le

m
en

ts
(m

ill
io

n)

m
ax

im
al

D
SP

bl
oc

ks
p

ea
k

fi
xe

d
-

p
oi

nt
p

er
-

fo
rm

an
ce

(T
M

A
C

S)

p
ea

k
fl

oa
t

p
oi

nt
p

er
-

fo
rm

an
ce

(T
FL

O
PS

)

m
ax

ad
ap

ti
ve

lo
gi

c
m

od
ul

es

In
te

lS
tr

at
ix

10
de

fa
ul

t
2.

75
3

5,
76

0
23

9.
2

93
3,

12
0

G
X

10
.2

-
13

.8
5.

5
3,

46
6,

00
0

SX
So

C
-

-
-

-
-

TX
-

-
-

-
-

M
X

2.
75

3
3,

32
6

15
.8

8.
0

70
2,

72
0

D
X

11
00

:
qu

ad
-c

or
e

A
R

M
p

ro
-

ce
ss

or

1.
32

5
2,

59
2

10
.4

4.
1

44
9,

28
0

D
X

21
00

:
8

G
B

H
BM

2
2.

07
3

3,
96

0
15

.8
6.

3
70

2,
72

0

D
X

28
00

2.
75

3
-

23
9.

2
-

N
X

al
ln

ot
sp

ec
-

ifi
ed

“-” is used to refer the default value at the top

Table 2.1: Intel Stratix 10 FPGAs Data Sheet Comparison [14] [20] [15] [11]

16

2 FPGA Systems

Ve
rs

io
n

m
ax

Sy
s-

te
m

L
og

ic
E

le
m

en
ts

(m
ill

io
n)

m
ax

im
al

D
SP

Sl
ic

es
H

B
M

D
R

A
M

(G
B)

Tr
an

sc
ei

ve
rs

32
.7

5/
58

G
B/

s
PC

Ie
G

en
3

x1
6/

G
en

4
x8

/C
C

IX

on
C

hi
p

M
em

or
y

(M
b)

V
ir

te
x

U
lt

ra
-

Sc
al

e+
3.

78
0

12
,2

88
0

12
8/

0
4/

0
45

5

V
ir

te
x

U
ltr

aS
ca

le
+

H
BM

2.
85

3
9,

02
4

16
96

/0
or

32
/3

2
0/

4
no

t
sp

ec
i-

fie
d

V
ir

te
x

U
ltr

aS
ca

le
+

58
G

3.
78

0
12

,2
88

0
32

/4
8

4/
0

45
5

V
ir

te
x

U
ltr

aS
ca

le
+

V
U

19
P

8.
93

8
3,

84
0

0
80

/0
0/

8
22

4

Table 2.2: Xilinx VIRTEX UltraSCALE+ FPGAs Data Sheet Comparison [38]

17

2 FPGA Systems

2.3.3 Design Decision for Intel

The computation power in floating-point operations per second is the critical data
sheet values because floating-point calculation is the main task performed in the ODE
solver. Unfortunately, both vendors do not provide data sheets with the same values.
Moreover, the data they have in common describes not always the exact same hardware
elements. For example, Intel uses the term DSP blocks. In contrast, Xilinx describes
this as DSP Slices. Additionally, Xilinx does not mention the overall compute power
in TMACs or TFLOPs, except for the base model Virtex UltraScale+, but only the
fixed-point performance. Also, this value does not outreach the performance of the
Stratix 10 GX, which is the best Intel FPGA for core fabric performance. Furthermore,
Intel provides good written documentation about their FPGA SDK for OpenCL and
useful tutorials to getting started with FPGA programming. The documentation is
split into three parts: “Getting Started Guide” [23], which introduces how to install
all necessary components. Furthermore, it explains how to compile OpenCL Code
with their Offline-Compiler for emulation and FPGAs. In addition, it shows how to
run an example design in emulation mode and on the FPGA. The “Programming
Guide” [24] takes a closer look at the different compiler configurations and the OpenCL
kernel and host program structure. The last part is the “Best practice guide” [22],
which explains how to tune different parts of your design to get the best performance.
Intel also provides some interesting examples to better understand good performing
OpenCL design, for example, Intel’s matrix-matrix multiplication. Due to the well
written documentation with tutorials and examples, the better comparable data sheets
with performance values over almost all devices, the decision was made to go with
Intel FPGAs and its SDK for OpenCL.

2.4 Programmability of FPGA Systems

This section gives an overview of how FPGAs can be programmed. The first part
explains the basics of the programming idea of OpenCL. The second part looks at
the more original way to program FPGAs with hardware description languages. The
OpenCL section takes the major part of the paragraph because it is the programming
language used in this thesis.

2.4.1 OpenCL Architecture

OpenCL is not only a programming language. It consists of an API, libraries, a run
time environment, and a language called OpenCL for kernel programming. It is an

18

2 FPGA Systems

industry standard for programming different types of hardware architecture like CPU,
GPU, and FPGA [45].

OpenCL Host and Device Side

The execution of the OpenCL program can be split into two parts. The first one is the
host side code that typically executes on the CPU. This code is written in regular C or
C++. The second part is the device side code, also called the kernel, which executes
on the accelerating devices. This device is typically the FPGA, GPU, or the CPU itself.
The kernel code is written in OpenCL, a C-like programming language. The host can
call the OpenCL API to start a new context, transfer or send data to the accelerator, get
information about the devices or the execution state of the kernel, and of course, start
the kernel execution. It is the part that initializes all necessary data and manages the
execution of the kernel. The kernel is almost always the performance critical part of
the program. It is a standard C-like method that receives all necessary data through
the function arguments [29] [45]. To better understand how this kernel method is
executed on the devices, the next section closely considers the execution or also called
the threading model.

OpenCL Execution Model

There are two different execution modes of the kernel. The first one is NDRange model.
When the host starts the kernel, the host needs to create an index space in one, two,
or three dimensions. The three dimensions can be any size. Each element in this
space gets a unique ID, called global ID. Depending on the number of dimensions
that the host defined, the global ID has one, two, or three components. For each such
element, named work-item, the kernel is started once. The number of all work-items
is called global work size. These work-items are packed into work-groups, which is
also an index space with the same number of dimensions as the global space, but with
a significantly smaller size. Why they are assigned to groups becomes evident in the
memory model. A fitting example for this kind of execution mode is a matrix-matrix
multiplication, where each element in the resulting matrix represents one work-item.
Its position in the matrix is defined by the two parts of the global ID [29] [45].
The second Programming model is called Single Work-Item. In contrast to NDRange,
the host program does not define a global index space. The kernel called by the host
is executed exactly once, therefore single work-item execution, is also called a task
execution. This one kernel does all computation. Parallelism is achieved through
pipelining and vectorization of the loops [29] [45].

19

2 FPGA Systems

Figure 2.3: NDRange example model with two global dimensions of the size 12 in the
first and 8 in the second dimension. Furthermore, this example has a work-
group size of 4 in both dimensions. That results overall in 96 work-items
packed into 6 different work-groups with 16 work-item each.

20

2 FPGA Systems

OpenCL Memory Model

The memory model of the OpenCL standard defines four different types of memory.
Global Memory: The data in this memory area is visible to all work-items in ev-
ery work-group. It allows read and write access. The global memory is the largest
but also the slowest memory because it is generaly located in off-chip memory like
DDR4-SDRAM. In most cases, it has a capacity of several Gigabytes, therefore good
comparable to the main memory in the Von Neumann architecture. When the host
program transfers data to the FPGA by calling the OpenCL API, it is stored in this
memory type. Depending on the device, specific areas are cached in the on-chip
memory [29] [45].
Constant Memory: It is also accessible for all work-item in every work-group but only
allows read accesses. Like the global memory, it is stored on external memory and can
be cached at run time in on-chip memory. The host creates data in this memory when
it transfers memory buffers with a read-only flag to the device. The constant memory
arguments of the kernel are signaled to the compiler by adding the keyword “constant”
before the variable name. For FPGA, this helps the compiler to optimizes the memory
access [29] [45].
Local Memory: This kind of memory is shared across all work-items in one work-
group. Work-items can not access the local memory of other work-groups. The host
has no access to this memory because it is typically stored in the on-chip memory and
initialized by the kernels. For FPGA the on-board memory blocks as explained in 2.1.1
are used for this memory type. Consistency for all work-items in one work-group is
only guaranteed after a barrier call in the kernel [29] [45].
Private Memory: Any variable, array, or buffer declared in the kernel code without the
“local” keyword is in the private memory. It is only accessible for the work-item, which
allocated it. On FPGAs, this memory is normally stored in registers or memory blocks
for larger data. If it exceeds the on-chip memory of the FPGA, it can leak to global
external memory. This creates huge performance drawbacks [29] [45].

2.4.2 Hardware Description Languages

Hardware Description Languages (HDLs) have compared to standard programming
languages a completely different structure. Originally, they were used to describe a
hardware design in text format to develop devices like ASICs. Therefore, every data
path and computation needs to be manually developed.

21

2 FPGA Systems

2.4.3 Reasons for Design-Decision using OpenCL

OpenCL with the Intel FPGA SDK for this thesis is used for this thesis for several
reasons. First of all, a C-like language is better fitting for automatic code generation.
Additionally, the more familiar language with the significantly better debugging is
important for a working end result. Furthermore, the TIDOWA system already supports
OpenCL for CPU execution. Therefore, much of the host source code can be reused,
and the kernels only need to be adjusted and optimized for FPGAs.

2.5 FPGA Development Tools and Design Example

This chapter gives a short introduction of how to use the Intel FPGS SDK for OpenCL
by explaining the necessary steps to compile and run a FPGA example design. With
this basic example, it is easier to understand how the workflow is integrated into the
TIDOWA system. First of all, we take a look at two important commands to interact
with the SDK.

2.5.1 Work Flow of Intel FPGA SDK for OpenCL

For a normal OpenCL design, the compilation of the kernel would take place at run
time. Due to the extremely high compile time of several hours, the kernel code is
compiled offline by the SDK Offline Compiler with the command:

$ aoc

In addition to the aoc command, Intel also offers a utility command called “aocl”, to
get information about the SDK. For example:

$ aocl version #prints the SDK version
$ aocl list-devices #prints all installed devices
$ aocl compile-config #Shows the flags for compiling your host program
$ aocl link-config #Shows the flags for linking your host

#program with the runtime libraries
$ aocl diagnose #Run your vendor’s test program for the board.

In contrast to the kernel, host side source code is compiled with a normal C or C++
compiler. The host binary that executes on the CPU loads the precompiled bit stream
on the FPGA and starts the execution [23].

22

2 FPGA Systems

Figure 2.4: The left side shows the compilation path of the host code, which uses the
C/C++ compiler install on the host system. The host program is linked with
the run time environment provided by the SDK. The right side represents
the path of the kernel compilation. The OpenCL source code stored in a
.cl file is compiled by the SDK offline compiler that creates a FPGA image
saved in an .aocx file [24].

23

2 FPGA Systems

2.5.2 Intel Matrix Multiplication

File Structure

The project consists of two parts. The common folder stores useful .cpp files for the
main program. For example, it contains functions to check error codes returned by calls
of the OpenCL API or functions that make it easier to get the right OpenCL platform.
The second directory is named matrix_mult, which itself is divided into two subfolders:
device for the .cl files and host for files like main.cpp executed in the host machine. The
compilation command will later create a third directory called bin for all executables
and binaries.

Compilation and Execution in Emulation Mode

To ensure that the kernel and host work properly, we first compile and run the program
in emulation mode. The emulation device is installed with the SDK, and therefore it is
not necessary to have a real FPGA plugged into the system to ensure that the program
satisfies functional correctness. To compile the .cl file for emulation, we use the aoc
command:

$ aoc -march=emulator -legacy-emulator -v device/matrix_mult.cl
-o bin/matrix_mult.aocx

-march=emulator -legacy-emulator are used to tell the compiler to compile the kernel
for the emulation device. -v reports the compilation progress. -o defines the path to the
output file. The host is compiled by executing the Makefile in the matrix_mult folder.
This creates an executable in the bin folder. To start the program in emulation mode,
type the command:

$ env CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA=1 ./bin/host
-ah=256 -aw=256 -bw=256

The environment variable is necessary to tell the host program to use the emulation
device. ah, aw and bw flags specifies the size of the matrix. They need to be set because
the default matrix size is pretty large, and therefore the execution in emulation mode
would take some time. The result of the program is printed to the console.

Compilation and first Execution on FPGA

After a first successful run of the matrix_mult in emulation mode, it is time to execute
the FPGA kernel to test it on the real hardware system. Therefore you need to recompile
it for a real FPGA board. Use the following command if you want to use the default
board:

24

2 FPGA Systems

$ aoc device/matrix_mult.cl -o bin/matrix_mult.aocx -v

If you want to use a specific board use:

$ aoc device/matrix_mult.cl -o bin/matrix_mult.aocx -v -board=<board name>

To get the name list of all installed boards call:

$ aoc -list-boards

This compilation needs several hours to finish. After a successful compilation, run the
host program again, but without the environment variable:

$ aoc ./bin/host -ah=512 -aw=512 -bw=512

Optimized Compilation and Execution

To increase the performance, you can add two additional flags to the Offline Compiler.

$ aoc device/matrix_mult.cl -o bin/matrix_mult.aocx -fp-relaxed -fpc

-fp-relaxed directs the OpenCL Offline Compiler to relax the order of arithmetic floating-
point operations using a balanced tree hardware implementation. -fpc removes inter-
mediary floating-point rounding operations. For even better performance, increase the
number of items in the one work-group. This improves the load operations from the
global memory. The third optimization is to specify the number of SMID work-items.
This attribute vectorizes the kernel. It is explain in detail in Section 4.3.4 . The optimized
compiling command is:

$ aoc device/matrix_mult.cl -o bin/matrix_mult.aocx -fp-relaxed -fpc
-DBLOCK_SIZE=256 -DSIMD_WORK_ITEMS=16

Important: The default block size (work-group size) in the kernel and the host is set
to 64. If you recompile the kernel with a new block size, it is necessary to recompile
the host program with the equivalent value. Just set BLOCK_SIZE with the desired
value as an environment variable.

Note: The step explained above to compile and run the kernel is specific to the
installation version of the Intel FPGA SDK for OpenCL (19.2). In newer versions, some
flag and environment variables can change.

25

3 TIDOWA

To create and run a solver for any given ODE system, the TIDOWA system implements
four steps discretization, code generation, compilation, and execution. All four steps
are implemented in python. The next sections explain the different TIDOWA steps.

3.1 Discretisation

The discretization step is implemented in a python file called main_disc.py. At first, it
loads a python configuration file. This configuration file uses sympy to define the ODE
system in a symbolic representation. Furthermore, it stores the integration method used
to discretize the ODE system. With the ODEs and integration method, this TIDOWA
step creates a discretized version of the ODE system and stores it in a python file called
discretization record. The discretization is now finished, and the code generation can
start. For detailed information on how the discretization works, see [3].

3.2 Automatic Code Generation

The python file main_codegen.py is responsible for the dynamic code generation. Before
we can understand how the code is generated, we need to know which files are used to
implement the ODE solver. Depending on the code type, the solver is implemented
in one or two files. The first one, which is contained in every code type, is the main
C or C++ file. It manages the execution. For example, it loads all IVPs stored in a
.csv file and saves them in buffers. The main program calls the solve_system method
ones for each of the IVPs. After the code generation, this function implements the time
integration for a specific ODE system and integration method. Currently, the code of
solve_system contains placeholders for the implementation of the integrating method.
Depending on the code type, this method is stored in a second or is implemented in the
main file. The solve_system method writes the results to an array. The main program
gets the result array and saves the results in a .csv file. For each of the code types, there
exists one such implementation called template. The actual code generation is done by
a python class called Transpiler. There exists one subclass for each of the code types,
for instance, C_Transpiler for the automatic C code generation. The main_codegen.py

26

3 TIDOWA

program creates the corresponding transpiler instance and calls the generate method
of the transpiler. This method takes the solve_system function of the Template and
replaces the placeholders with the implementation of the integration. The discretization
record defines the ODE system and integration method. This TIDOWA step stores all
files in a new code_built directory. After the code generation step the generated code
is syntactically correct. All placeholder were superseded. Furthermore, the generated
files implement a semantically correct ODE solvers. See [3] for further information.

3.3 Compilation

TIDOWA compilation step takes the generated code and compiles it to create an
executable. The main_compile.py python file implements the automatic compilation.
TIDOWA compilation supports different compilers like GNU, Intel, or NVIDIA CUDA
compiler. The code type defines the compiler and the flags that are used for the
compilation. With the compiler, the flag, the code input files, and the output file’s name,
the compilation step generates and executes a compilation command. Initially, in [3]
this step was implemented in Makefiles. Former work has changed it to a python-based
build system.

3.4 Execution

This part only starts the executable with the necessary arguments like the CSV input
and output file paths.

27

4 FPGA in TIDOWA

This part of the thesis explains the FPGA OpenCL ODE solver’s implementation and
how the code is integrated into the TIDOWA system. We will first take a look at the
host and kernel side implementation. It is important to know the kernel and host
structure to understand the kernel-optimization, covered in the following section. After
getting a deep understanding of implementation, the last part of this section shows how
to use the automatic TIDOWA code generation and how the different optimizations
are applied.

4.1 Host Side Implementation

The host side implementation is written in standard C++. It consists of two parts. The
first one is the common directory with the AOCLUtils .cpp files. It is provided by Intel
and implements useful functions to simplify things like the finding the correct OpenCL
platform. The second part is the main.cpp. It manages the execution by setting up all
the necessary variables, starting the kernel, and finishing the calculation correctly. The
initialization takes on the following tasks: Creates arrays for the integration starting
values, the different parameter values, and the results.

4.1.1 OpenCL Initialisation

The function that implements the initialization is called opencl_init. It calls functions
to get the right platform and device id. Further on, it creates an OpenCL context with
the device id. Beside, this function generates and builds a program object from the
.aocx binary file. All variables are stored globally to have access to them in the other
OpenCL functions.

4.1.2 Start OpenCL Kernel Execution

This function first creates a new command queue and all OpenCL buffers for the kernel.
After the allocation of the buffers, the host writes the corresponding array or variable
on it. For example, the previously created parameter array is written into the parameter
OpenCL buffer. The host calls the clCreateKernel method with the program object and

28

4 FPGA in TIDOWA

kernel name as arguments to create a new kernel instance. The initialized buffers are
now set as kernel arguments. Before the host side kicks of the kernel execution, the
last step is to create the global and local work-group size. This implementation only
uses one dimension to define the global ID because more dimension would only cause
more complicated indexing in the kernels while gaining no profits. The host now starts
the kernel by executing the NDRange method. After the kernel finishes successfully,
the host writes the results stored in one of the OpenCL buffers into a global array.
Furthermore, it calls an OpenCL profiling method to get the kernel’s execution time.
The last part finishes the command queue and releases all OpenCL objects created in
this method, like the kernel and the buffers.

4.1.3 Finish OpenCL

The method opencl_cleanup calls the release method for the globally stored program
and context object to finish the OpenCL part correctly.

The OpenCL part is split into three methods to accelerate the execution and pre-
vent memory leaks for the optimizer. The optimizer often calls the solve method
implemented in the kernel. It would create a huge overhead, and unnecessary memory
allocations if the initialization and finish part would be in the same function that starts
the kernel.

4.2 Kernel Side Implementation

4.2.1 Kernel Function

The function solve_system is marked with the keyword __kernel to tell the compiler
that this method is a kernel. The solve_system kernel has 6 arguments:

• Two pointers to double arrays for the different parameter and initial value sets.

• One pointer to a double array for the results.

• One double pointer for the time integration step size.

• Two int pointers for the number of integration steps and the position when the
kernel starts saving the results.

All arguments except for the result array are marked with the __constant keyword to
tell the compiler that these values are stored in the read-only memory. Therefore, the
compiler can perform optimizations for these variables.

29

4 FPGA in TIDOWA

4.2.2 Index Initialisation

The kernel first stores all constant single value arguments in the private variables. Then
it calls the get_id function for global and local item work space. With these values, the
kernel calculates the offset in the parameter, initial value and result array.

4.2.3 Array and Variable Initialisation

In this step of the execution, the kernel allocates two privates array, one for initial
values and one for the parameters. In two for loop, the kernel initializes the arrays by
reading the corresponding data with the calculated offset from global memory. For each
equation in the ODE system, the solve_system method created one private variable.
Furthermore, it allocates the necessary variables for the integration method.

4.2.4 Main Calculation Loop

In every loop iteration, the kernel calculates the results for one time integration step.
It first increases the time variable by the integration step size. Depending on the
integration method, the kernel computes the necessary variables. For example, if the
implementation uses Runge-Kutta-4, four variables are calculated for each equation in
the ODE system. With the calculated variables for each equation, the kernel computes
the integration results and stores it in the variable. This loop is the most computationally
intensive task and accounts for a large part of the execution time and hardware
resources.

4.2.5 Result Write-Back to Global Memory

The result’s write-back is integrated into the integration loop, explain in Section 4.2.4.
With an if statement, the kernel determines if the integration loop already reached the
start saving point. After the integration loop reaches this point, the kernel writes the
previous iteration results back to global memory. The number of equations defines
the size of the inner loop. For example, if the host sets the start saving point to 0, the
kernel writes the results into the global memory in every loop iteration.

4.3 Kernel optimization Techniques

The following sections explain different optimization techniques that are applied to the
solve_system kernel. For each technique, the corresponding section shows what this
optimization is about, on which part of the code it can be used, and how it can lead to
better execution times. Furthermore, it takes a look at its restrictions and downsides.

30

4 FPGA in TIDOWA

4.3.1 Loop unrolling

Loop comes with the downside that the control logic can cost performance, especially
if the termination condition is complex. To reduce this overhead, OpenCL allows
unrolling loops. The compiler replicates the loop body multiple times and decreases
the number of iterations. If there are no loop-carried dependencies, the iterations pack
into one run, can be performed in parallel. To direct the compiler to use loop unrolling,
a pragma is applied directly in front of the loop [24]. For example:

#pragma unroll <unroll_factor>
for (int i = 0; i < N; ++i) {

<loop_body>
}

The unroll factor defines the number of loop body replications in one iteration. This
optimization can be applied to the initialization of the initial values and parameter
arrays. Furthermore, it can be used for the write-back loop of the results. We can fully
unroll all of these loops because the trip count is very small and known at compile
time. The main calculation loop can also be unrolled but only by a factor. Complete
unrolling is not feasible because the size of the loop is typically not set at compilation
time. Moreover, a complete unrolled integration loop probably does not fit on the
FPGA. The technique’s downside is the larger area usage because the compiler needs
more logic to implement the larger loop body. Besides, loop unrolling comes with the
restriction that the loop size must be evenly dividable by the specified unroll factor.

4.3.2 Specifying required or maximal Work-Group Size

Intel recommends specifying the size of one work-group whenever possible. There
are two variants to do so, defining the maximal or required work-group size. The
maximal only sets an upper bound for each dimension of the work-group size, while
the required work-group size sets strict values for each dimension. If these values are
not specified, a default value is assumed by the compiler. This can lead to inefficient
hardware if the actual size deviates significantly from the compiler’s assumption [24]
[22]. The restriction is that if the host calls the kernel with an invalid work-group size,
the computation will result in an error. A kernel with a required work-group size of
256 in the first dimension would look like:

__attribute__((reqd_work_group_size(256,1,1)))
__kernel void kernel_name()

31

4 FPGA in TIDOWA

4.3.3 Specifying Compute Units

One option to add data parallelism to the FPGA execution is to specify the number of
compute units. To set the number of compute units, we add the following argument to
the kernel:

__attribute__((num_compute_units(<number_of_compute_units>)))
__kernel void kernel_name()

The compiler replicated the kernel logic by the number of compute units. Each compute
unit can execute several work-groups concurrently though pipelining. The work-groups
are dynamically distributed to the different compute units. Two work-items in the same
work-group always execute on the same compute unit. The implementation downside
is that the several compute units use more FPGA resources and the parallel execution
of work-groups need more bandwidth [24] [22].

4.3.4 Specifying SIMD Work-Items

The second version that applies data parallelism to the FPGA execution is the vector-
ization of the kernel over the work-item. The FPGA executes with this optimization
multiple work-items in a single instruction multiple data manner. The compiler archive
this by a widening of the pipeline. It increases the data throughput at the cost of more
area usage. To apply vectorization, add the SIMD attribute in front of the kernel:

__attribute__((num_simd_work_items(16)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void kernel_name()

The restriction is that the required work-group size must also be specified if the SIMD
attribute is added. Furthermore, the work-group size must be evenly dividable by the
number of SIMD work-items. The vectorization factor must be a power of 2 and equal
to or less than 16 [24].

The last two sections dealt with two different options to apply data parallelism to
FPGAs. Intel recommends preferring the vectorization over the multiple compute units
because the compiler can generate more efficient hardware while archiving the same
goal. For example, one memory access in four different compute units are distinct from
each other, while a kernel with a SIMD factor of four performs only one memory access
with a larger width [22].

32

4 FPGA in TIDOWA

4.3.5 Floating-Point Optimization

Relaxed Order of Floating-Point Operations

Long calculation with an unbalanced structure have a long critical path. To create
more efficient hardware, the calculation can be reordered by generating a balanced
tree structure. The compiler applies the relaxed order of floating-point operation if
following flag is added to the kernel compilation:

$ aoc -fp-relaxed <file_name>.cl

Because the order of floating-point operations has changed, the results can differ
minimally from the original computations. Therefore, this optimization suits only in
application with a tolerance [22].

Rounding Floating-Point Optimization

In some kernels that implement complex calculations, many intermediate rounding
operations are performed. These rounding operations consume much of the hardware
resources. The flag -fpc directs the compiler to reduce the number of rounding
operations. This reduces the required hardware resources. Similar to the optimization
explained in Section 4.3.5, this technique violates the IEEE Standard 754-2008 and
therefore produces slightly different results [22]. The compilation command is:

$ aoc -fpc <file_name>.cl

4.3.6 Avoid Pointer Aliasing

Pointer aliasing means that two arguments of the kernel can address the same location
in the memory. The compiler needs to create extra hardware to prevent invalid read and
writes to the potential same memory location. If there is no aliasing between pointers,
direct the compiler to get rid of the extra control logic by applying the keyword “restrict”
in front of the argument name. Therefore, all kernel arguments can be marked with
this keyword because in this design there is no aliasing between the arguments.

4.4 Integration of OpenCL for FPGA into TIDOWA

The chapter 3 explained the four TIDOWA steps to generate and execute an ODE
solver for any interagteion method and ODE system. To support OpenCL for FPGAs
these steps are extended or slightly changed. Furthermore, to be able to generate
different versions of the optimization, a fifth step is added. This new part is not directly

33

4 FPGA in TIDOWA

integrated into the TIDOWA system. The following sections explain the changes
applied to the different TIDOWA step to add OpenCL for FPGAs. The discretization
was left out because it remained the same.

4.4.1 Automatic Code Generation

To support OpenCL for FPGAs, a new template was added with the main.cpp file, the
kernel written in OpenCL and the utility files explained in Section 4.1. Furthermore, a
new subclass called OpenCL_FPGA_Transpiler of the transpiler class was implemented.
The generated code of this code type differs slightly. While the generated code is for the
other languages already syntactically correct and ready for compilation, the OpenCL
code for FPGAs contains placeholders used later in the optimization part.

4.4.2 Compilation

The Altera Offline Compiler (AOC) was added to the set of compilers to support kernel
compilation for FPGAs. Moreover, new compilation commands were implemented into
the main_compile.py program to compile the OpenCL host and kernel program.

4.4.3 Execution

The execution stage stays the same, only an environment variable is set if the OpenCL
program should run in emulation mode. This environment variable is explained in
Section 2.5.2

4.4.4 Automatic FPGA Optimization

The optimization takes place between the TIDOWA code generation and compilation
step. As explained in Section 3.2, the .cl file still contains markers. For example:

%%OPTI_NUM_COMPUTE_UNITS%%
%%OPTI_SIMD_WORK_ITEMS%%
%%OPTI_REQUIRED_WORK_GROUP_SIZE%%
__kernel void solve_system(...)

The optimizes take the .cl file with the markers, replace them and writes a new syn-
tactically correct file called calc_func_opti.cl. To tell the optimizer which optimization
values are applied, the optimizer gets also a Python file as input. This file contains a
Python dictionary. The keys of the dictionary are the name of the optimization, and the
values to each key are the optimization factors.

34

4 FPGA in TIDOWA

For example, the following dictionary:

{"OPTI_NUM_COMPUTE_UNITS": 2,
"OPTI_REQUIRED_WORK_GROUP_SIZE": 128,
"OPTI_SIMD_WORK_ITEMS": 16,
}

would create this code:

__attribute__((num_compute_units(2)))
_attribute__((num_simd_work_items(16)))
_attribute__((reqd_work_group_size(128,1,1)))
_kernel void solve_system(...)

The code is then ready for the TIDOWA compilation step. To apply compiler optimiza-
tions like the reordering of the floating-point operations, we add an array with flags to
the dictionary with the key “additional_flags”. Theses flags are added to the TIDOWA
compilation step of the kernel. Thus it is possible to create any optimized code with
any optimization factor of the optimization techniques. Of course, the restrictions of
OpenCL must be adhered to, otherwise the compiler will raise an error.

35

5 Evaluations of Optimizations based on
Kernel Reports

This part of the thesis first explains the different tests for the optimizations. There are
two types of tests. The first one is the “default” test type, where similar optimizations
are packed into one test. The second type of test is the “combined” test. These tests
implement almost all optimizations with different optimization factors. With these
implementations, we try to achieve the best possible performance. After the various
tests have been defined, we look at the kernel report and compare the test cases’ used
hardware resources. We will compare the performance of these tests in Section ??.
The best performing implementation is compared to the run times of other hardware
architectures.

5.1 Default Optimization Techniques

For the performance testing, the most meaningful test would be to allow the default
implementation to compete against each optimization technique. Moreover, we could
apply different optimization factors or pack several optimizations into one group.
The benchmarks would then show which combination of optimization factors and
techniques would produce the best results. Unfortunately, this would create an immense
amount of compilation, and due to the long compilation time, this brute-force-method
is not feasible for this thesis. Therefore, optimizations that are very similar or depend
on each other are packed into one test. Which optimizations are grouped together is
explained in the following sections. .

5.1.1 Default

The default implementation has almost no optimization. It only uses the “restrict”
keyword in front of every kernel argument to tell the compiler there exists no pointer
aliasing between the variables. For advantages of this keyword, see Section 4.3.6.

36

5 Evaluations of Optimizations based on Kernel Reports

5.1.2 Static Loop Unrolling

There are three loops for which the number of iteration is known at compile time:

• Initialization of the initial value array

• Initialization of the parameter array

• Write-back of the results to global memory

Because of the small size of the loops, they are unrolled completely. Therefore, the loop
overhead is eliminated.

5.1.3 Integration Loop Unrolling

The integration loop unrolling was placed in a separate test because it differs from the
static unrolled loops. First of all, the trip count of the integration loop is typically much
larger. For example, the oscillator equation has two equations and two parameters.
Therefore, the initialization and write-back loops have a size of two. In contrast, the
integration loop has, in some test cases, several thousand iterations. Moreover, while
the size of the static loops is known at compile time, the integration loop can be of any
size. For these reasons, we test the performance and hardware usage separately.

5.1.4 Kernel Attributes

The test combine all optimizations that are an attribute in front of the kernel. Therefore,
the optimization for this test suite specify:

• Number of compute unis (see Section 4.3.3)

• Number of Single Instruction Multiple Data (SIMD) work-items (see Section 4.3.4)

• the required work-group size in section (see Section 4.3.2)

• global work offset

5.1.5 Floating-Point Optimization

The floating-point test suite combines the relaxed order of floating-point operations
explained in Section 4.3.5 and the floating-point rounding optimization explained in
4.3.5. Compared to the default implementation, no changes were applied to the code,
only the two flags “-fp-relaxed” and “-fpc” were added to the compilation command.

37

5 Evaluations of Optimizations based on Kernel Reports

5.2 Combined Optimization Techniques

The following sections describe the tests that try to archive the best performance. For
each test the sections explain which optimizations and optimization factors are used.
In addition, it explicates the goal or reason of the test beside the performance.

5.2.1 Maximal Vectorization

For this test, the focus was on vectorization. With a SIMD factor of 16 the maximal
possible value allowed by OpenCL was used. The number of compute units is set to 1,
because for other values the compilation aborted with the error message that the design
exceeds the hardware resources. Furthermore, to support vectorization we also need to
specify a required work-group size. It was also adjusted to 128. Additionally, the global
work offset is set to 0. The static loop unrolling explained in Section 5.1.2 is applied
too. To fit the vectorization onto the FPGA we need to reduce the hardware usage.
Therefore, the floating-point optimization of Section 5.1.5 is added to the compilation
command.

5.2.2 Vectorization and Compute Units

This test try to compare the vectorization and the use of multiple compute units. It
will be compared to the test of Section 5.2.1. While the other only use a vectorization
with a factor of 16, this implementation has two compute units with a vectorization
of 8 to keep the degree of parallelization the constant. Furthermore, to have a fair
comparison the work-group size is also set to 128, the global work offset is 0, it uses
the floating-point optimization and implements the static loop unrolling.

5.2.3 Unrolling Integration Loop with Floating-Point Optimization

In this test integration loop unrolling of Section 5.1.3 and the floating-point optimization
is combined. The goal of this test is not to get a better performance than the default
integration loop unrolling, the focus is to find out how much hardware can be saved
for the unrolling implementation by using the the two compilation flags.

5.2.4 Vectorization, Compute Units and Unrolling

This test uses all optimizations but with smaller factors to fit into the FPGA. There
are two versions of this test. The first one has two compute units, a vectroization of
four and two as integration loop unrolling factor. In contrast the second version, it
has three compute units. Both version also implement the static unrolling and use the

38

5 Evaluations of Optimizations based on Kernel Reports

floating-point optimization. There are two implementations, because only of a large
number of IVPs the second version can take advantage of the extra compute unit. For
smaller problems sizes the overhead of the third compute unit could be larger than the
additional computing power.

5.3 Kernel Report Comparison

During the compilation, the AOC creates a HTML report file. The kernel report has
three main analysis types. Throughput analysis, area analysis and system viewers. In
this section takes a deeper look at each of the kernel area analysis part. It describes
the used hardware resources of each part of the kernel. Four hardware components
are used for the analysis: Adaptive logic-up tables (ALUT), registers (FF), on-chip
memory banks (RAMs) and the digital signal processors (DSP). The first diagram
shows the static partition, which does not change for any compilation. The second
diagram illustrates the used hardware resources for the default implementation. In the
remaining bar chart graphs this default implementation serves as a comparison. The
bars of the default version are always shaded.

Static Partition
0

5

10

15

11

7

4

0

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUT FFs RAMs DSPs

Figure 5.1: This diagram shows the portion of the total hardware resources used by the
static partition. The static partition implements the platform interface logic.
The size of it is independent of the compiled OpenCL kernel. Therefore, it
stays the same for all compilations of the different optimizations and is left
out in all other diagrams.

39

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

5

10

15

20

17

6
5

12

4 4
5

2
1

2 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUT FFs RAMs DSPs

Figure 5.2: This bar chart diagram describes the used hardware in % for the default
implementation. The total part is consisting of the static partition (see Figure
5.1) and the OpenCL kernel. The OpenCL kernel contains the following
parts. The global interconnect, the indexing and initialization part and the
integration loop. All diagrams only show the Integration Loop hardware
utilization, because it consumes the major part of the kernel hardware. The
largest part is made up of the static partition, but the relation between the
hardware components of the OpenCL kernel shows that the critical resource
are the ALUTs.

40

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

10

20

30

40

50

60
55

44
42

17

6 5

37

30 29

12

4 4

11
7 65

2 1

14 14 14

2 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.3: This bar chart diagram shows the used hardware resource in % of the
following optimization: The number of compute units is set to one. The
factor of the SIMD work-item attribute is 8. The global work offset is set to
0. Furthermore, to support vectorization we also need to specify a required
work-group size. In this case this is also adjusted to 8. Without any other
optimization this was the maximal verctorization that could have been
archived. For a verctorization of 16 the compilation aborted with the error
message that the design exceeds the hardware resources of the FPGA.

41

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

5

10

15

20

13

2 2

17

6
5

10

3
2

12

4 4

6

2
1

5

2
1

2 2 22 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.4: This bar chart diagram compares the hardware resource usage of floating-
point optimization of Section 5.1.5 with the default implementation. It
shows several interesting observations. The used hardware in total did
not change significantly. This can be explained by the fact that the static
partition makes up the most prominent part (see Figure 5.2), which stays
the same for any optimization. For the OpenCL kernel and the integration
loop, this observation changes. The integration loop only consumes a
third of the ALUTs and half of the FF resources compared to the default
implementation. The number of RAMs and DSPs is equal for the default
and optimized implementation. These two results arise from the fact that
the intermediate floating-point rounding mainly consumes logic like ALUTs
and FF and not DSPs. DSPs are used for the floating-point operation itself.
Furthermore, the percentage of used RAMs does not change, because they
only store value and are not part of the calculation hardware. Since we only
optimized the calculation part, the number of RAMs is equivalent.

42

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

5

10

15

20

16

6
5

17

6
5

12

5
4

12

4 4

6

2
1

5

2
1

2 2 22 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.5: This bar chart diagram compares the hardware resource usage of floating-
point optimization of Section 5.1.2 with the default implementation. The
hardware usage for the unrolling of the static implementation did not
changed very much. Only the total number of ALUTs decreased slightly.
This small improvement is achieved in side the kernel. Unfortunately, due
to the rounding of the percentage, we can not see the differences. In fact
the unrolled version used 5,76%, while the default variant consumes 5,79%.
Normally unrolling of loops increase the hardware usage, because the loop
body is replicated. It is not the case here, because the loops are all unrolled
completly and have a size of two. Therefore, the extra hardware of the
second loop body, consumes slightly less resources than the control logic of
the loop.

43

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

10

20

30

40

50

60
55

44
42

17

6 5

37

30
28

12

4 4

12
8 7

5
2 1

13 13 13

2 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.6: This bar chart diagram describes the change of used hardware resources if
the integration loop is unrolled (see Section 5.1.3) with the default version
as a comparison. The unrolling factor is set to 8. Therefore, the hardware
structure of the loop body is replicated eight times. Due to the complex
calculations of the integration step implemented in the loop body, the con-
summation of all resources increases clearly. The OpenCL kernel part shows
that the new design uses fewer resources than eight times the default version.
The fewer consummation has two reasons. First of all, only the loop body is
replicated, and parts like the indexing stay the same. Besides, the computa-
tion potential can share some logic. A downside of this implementation is
that for all tests, the loop’s trip count needs to be a multiple of 8.

44

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

10

20

30

40

50

41

31
28

17

6 5

39

32
30

12

4 4

39
35

33

5
2 1

27 27 27

2 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.7: This diagram illustrates the hardware consumption of the optimized version
described in Section 5.2.1. The key optimizations are the vectorization of
16, unrolling of all static loops, and the floating-point compilation flags.
Because this design implements a large vectorization, it needs many more
resources, but significantly less than 16 times the default version. This is
possible due to the floating-point optimizations and the vectorization that
allows the different hardware paths to share some logic. It is particularly
noticeable that the overall hardware consumption is more evenly divided
across the different components. Thereby the available ALUTs are no longer
the critical resource.

45

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

10

20

30

40

50

39

28
26

17

6 5

38

31
28

12

4 4

30
26

23

5
2 1

27 27 27

2 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.8: This bar chart shows the hardware consummation of the optimized version
explained in Section 5.2.2. Like the version of Figure 5.7 it consumes less
than 16 times the hardware of the default version for all three analysis
points, except for the RAMs in the integration loop. In comparison to the
resource usage of the version with vectorization only (illustrate in Figure
5.7), it consumes, except for DSPs fewer hardware resources, even if the
parallel degree is the same. Therefore, vectorization only, is in terms of
FPGA resource reduction, not the best option.

46

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

10

20

30

40

50

60

24

14
12

55

44
42

23

16 15

37

30
28

20
16

14
12

8 7

13 13 1313 13 13

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs No FP Opti FFs FFs No FP Opti
RAMs RAMs No FP Opti DSPs DSPs No FP Opti

Figure 5.9: This bar chart diagram differs a bit from the others. It compares the
hardware usage of the integration loop unrolling with and without the
floating-point optimization. These two versions are explained in Section
5.2.3 and Section 5.1.3. The graph shows three significant observations. The
floating-point optimization reduces the amount of used ALUTs and FFs
tremendously. For the OpenCL kernel, the optimization more than thirds
the number of ALUTs and almost halves the amount of FFs. In contrast, for
the OpenCL kernel and the integration loop, the quantity of RAMs doubles,
and the amount of DSPs stays precisely the same. In terms of hardware
resource management, these observations show that it is helpful to apply
the floating-point optimization because the ALUTs are the bottleneck of this
design. On the other hand, for applications that already integrate many
RAMs in the default design, unrolling with floating-point optimization
could increase the critical portion.

47

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

10

20

30

40

50

38

28
25

17

6 5

38

30
28

12

4 4

28
24

22

5
2 1

27 27 27

2 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.10: This diagram illustrates the hardware resources for the optimization ver-
sion of Section 5.2.4 with two compute units. For the OpenCL Kernel part
the diagram shows that used resources are very well distributed among all
hardware components.

48

5 Evaluations of Optimizations based on Kernel Reports

Total OpenCL Kernel Integration Loop
0

10

20

30

40

50

60

51

41
38

17

6 5

53

45
42

12

4 4

38
35

33

5
2 1

40 40 40

2 2 2

%
us

ed
H

ar
dw

ar
e

R
es

ou
rc

es

ALUTs ALUTs Default FFs FFs Default
RAMs RAMs Default DSPs DSPs Default

Figure 5.11: This diagram illustrates the hardware resources for the optimization ver-
sion of Section 5.2.4 with three compute units. Compared to the other
optimization the high DSP utilization is very significant.

We can draw several conclusions with the help of the diagram. First of all, it is inter-
esting that the static partition always remains the same. The section observation is that
the integration loop constantly consumes a major part of the hardware resources due
to the complex floating-point operations. It is also noticeable that every optimization
did not consume significantly more than 50% of any hardware component. Besides,
the floating-point optimizations have a considerable impact on hardware utilization.
Without the floating-point optimizations, many designs would not have compiled
successfully because the distribution among the hardware components would have
been very uneven.

49

6 Performance Testing

This chapter of the thesis deals with performance testing. First, we take a look a the
testing environment that is used for the execution. The second section explains how
these tests are performed in a repeatable, standardized way. The next part shows the
different test cases. In the last chapter, the performance results are demonstrated for
the different optimization techniques and run configurations.

6.1 Utilized FPGA System

For the performance testing, the FPGA System of the Ludwig-Maximilians-University
was used. This system implements the Intel FPGA Programmable Accelerating Card
D5005 with the device number BD-ACD-1SX280H2DES. The core is an Intel Stratix
10SX FPGA (1SX280HN2F43E2VG). The accelerating card contains four DDR4-SDRAMs
memory banks with 8 GB each and a data rate of 2400 MT/s. The PCIe Gen3 x16
interface connects the accelerating device to the rest of the system. For further infor-
mation about this accelerating card, see [21]. The system has two Intel(R) Xeon(R)
CPUE5-2630L as CPUs with six cores and two threads each at a clock rate of @ 2,4GHz.
As Random Access memory (RAM) it contains eight of the Hynix HMT41GR7AFR4A
DDR3 memory with 8 GB each. The operating system is CentOS Linux.

6.2 Testing Procedure

A Python script realizes the automatic testing. All run configurations are stored in an
array that contains Python dictionaries. These dictionaries have the following structure:

{ "num_combinations": 16,
"num_steps": 4096,
"deltaT": 0.01,
"begin_start_saving": 4096}

We execute the tests in different directories. The execution stores all results in subfolders.
The script collects all execution times. It stores the values in separate arrays in a Python
dictionary. The key is a string composed of the test name and the run configuration

50

6 Performance Testing

values. This procedure is repeated for the specified number of runs. This dictionary
is serialized and stored in a file with the Python package pickle. Therefore, it is later
easier to transfer, load, and analyze the results.

6.3 Test Cases

Two variables define a run configuration—the number of initial values and parameter
combinations and the number of integration steps. The size of the time step is equal
for all tests, and the start saving variable always has the same values as the number of
integration steps. Therefore, the solver only stores the values of the last integration step.
This modification is applied because we only want to analyze FPGAs’ core compute
performance in this thesis. First tests have shown that external memory access with
this design is a bottleneck. Consequently, the write-back of the results needs to be kept
at a minimum. Optimizing the write operations would have been beyond the scope of
this thesis. For a fair comparison, all GPUs’ tests are also started with equal values for
the number of steps and start saving point.
For the tests, we use the following values.

#IVPs ∈ {128, 1024, 4096, 8192, 16384} #ISs ∈ {128, 4096, 32768, 131072} (6.1)

Each value of the IVPs is combined whit every value of the ISs. Therefore, the overall
number of run configurations is 20. Combining these values builds a wide range of
tests. The different optimization techniques of sections 5.1 and 5.2 are executed with
each run configuration. Each execution is started several times. With the different
executions, we can calculate the average, maximal and minimal execution times.

6.4 Results

This section shows the execution time results for the different run configurations.
The tables are arranged with an increasing number of IVPs and of ISs. Not every
combination of IVPs and Integration step is presented because the difference for some
run configurations are shallow. The diagrams only represent significant changes. Each
bar graph is labeled with the used optimization. To fit into the diagram, the following
abbreviations are used. Furthermore, the best performing version is marked in green
and the worst in orange.

51

6 Performance Testing

Abbreviation Explanation

CP=<value> The number of used compute units (see Section 4.3.3)
VEC=<value> Used vectorization factor (see Section 4.3.4)
IUR=<value> The unrolling factor of the integration loop (see Section

5.1.3)
SUR Static loop unrolling (see Section 5.1.2)
FP OPTI Floating-Point optimization by applying the two compila-

tion flags explained in 5.1.5
DEFAULT This references the default implementation

Table 6.1: Abbreviations of the Optimizations

Figure 6.1: Execution Times of 128 Initial Value Problems and 128 Integration Steps

52

6 Performance Testing

Figure 6.2: Execution Times of 1024 Initial Value Problems and 128 Integration Steps

Figure 6.3: Execution Times of 4096 Initial Value Problems and 128 Integration Steps

53

6 Performance Testing

Figure 6.4: Execution Times of 4096 Initial Value Problems and 131072 Integration Steps

Figure 6.5: Execution Times of 8192 Initial Value Problems and 128 Integration Steps

54

6 Performance Testing

Figure 6.6: Execution Times of 16384 Initial Value Problems and 4096 Integration Steps

Figure 6.7: Execution Times of 16384 Initial Value Problems and 131072 Integration
Steps

55

6 Performance Testing

6.5 Discussion

This section analyses the run times of the different optimization test cases demonstrated
in Section 6.4. Each of the following sections described one observation of the execution
time bar graphs.

Initial Observation

The first bar graph diagram of figure 6.1 shows the execution time for the smallest size
with 128 Initial Value Problems and 128 Integration Steps. For this run configuration,
the version that implements only the floating-point optimization performs the best.
This stays the same for all tests with 128 IVPs . The diagram shows clearly that
multiply compute units, vectorization, and unrolling increase the run time for this
magnitude of IVPs and ISs. The vectorization of 8 has the highest execution time. For
this small problem set, the version of {0, 1, 2, 3, 9} can not take advantage of the added
parallelism. The pipeline length is probably larger than the number of global work-
items. Therefore, widening the pipeline with vectorization or adding more pipelines
by specifying multiple compute units increases the pipeline’s management overhead
and empty states. This results in a longer execution time. The bad performance of
these hardware configurations is equal for all tests with 128 IVPs. Only some of the
versions with floating-point optimization can perform slightly better than the default
implementation.

First significant Change

The first significant change appears with the increase of IVPs to 1024, see figure 6.2.
The problem size is now large enough to take advantage of the extra parallelism. The
versions of {0, 1, 2, 3, 9} performed previously worse than the default implementation,
have now an immense shorter execution time. The new best version is number 3
with two compute units, vectorization of 4, integration loop unrolling of 2, static loop
unrolling, and floating-point optimizations. Even if number 9 has more compute units,
number 3 performs better for all run configurations with up to 16384 IVPs and 128 ISs.

Static Loop Unrolling

The static loop unrolling is for this implementation with no global memory write-back
unambiguously the worst optimization. Only for the first run configuration, it performs
just as well as the default implementation. For every other number of IVPs and ISs, the
static loop unrolling has a significantly larger execution time.

56

6 Performance Testing

Relative Differences for equal IVPs

This part looks at the run times for an equal amount of IVPs, but an increasing number
of ISs. For this observation figure, 6.3 and 6.4 are relevant. The execution time for 5,
6, and 7 increased almost by the increasing factor of ISs. For example, in figure 6.3,
the static unrolling has an execution time of 2.56e−03 seconds. 1024 is the increasing
factor of the ISs between figure 6.3 and 6.4. The time multiplied with this factor is
2.62e+00. This value only deviates by 4% from the actual execution time of static loop
unrolling in figure 6.4. The linear increase does not hold for the rest of the optimization
versions. Therefore, for an equal number of IVPs, the relative difference increases with
an increasing number of ISs.

Relative Differences for increasing IVPs

The previous section exposed that the relative difference between {0, 1, 2, 3, 8, 9} and
{5, 6, 7} increases with a larger number of IVPs and equal ISs. That this also applies
the other way around shows the comparison of figures 6.3 and 6.5. This time the ISs
keep equal, and the number of IVPs is doubled. The factor between the execution time
of {5, 6, 7}, is almost equal to the incensing factor of the number of IVPs . Like in the
previous section, this does not hold for version in {0, 1, 2, 3, 8, 9}. This results again in
an increase of the relative differences. Therefore, with this two observation, it is clear
that the performance difference increase with larger problem sizes.

Best Version for maximal Problem Size

At a size of 16384 IVPs and 4096 ISs the best performing version changes to number
9. This version can take advantage of the extra compute unit at this problem size
compared to number 3. For the rest of the run configuration, this version remains the
best and is consequently the best variant for the hugest problems.

57

7 Cross-Architecture Comparison

7.1 CPU, GPU Description

The used hardware for the performance benchmarks is described in this section. For
information about the FPGA system, see Section 6.1. The CPU and GPU tests were
executed on the same system, made available by the Technical University of Munich.
The system implements the AMD Ryzen Threadripper 2990WX as CPU and the NVIDIA
QuadroP6000, and the NVIDIA Tesla K20 as GPUs. The CPU has 34 cores with 64
threads. Only the Quadro P600 was utilized for the GPU benchmarks because it has by
far more compute power. Furthermore, the system implements 64 GB main memory.

7.2 Results

This section compares the execution times on different hardware systems. Each plot
illustrates the run times for an increasing number of initial value problems with a
constant size of integration steps. All run times for the FPGA are of one optimization
version to keep the comparison fair. The implementation with two compute units,
vectorization of 4, unrolling of 2, floating-point optimization, and static loop unrolling,
was used. Of course, it is not the best performing version for every run configuration.
For example, the default implementation outperforms it for small problem size, and
the optimization with three compute units runs faster for the largest problems. Never-
theless, it is, on average, the best overall run configurations. We did not change the
used versions for different problems because the CPU and GPU implementations were
also not optimized based on the problem size. For the CPU execution, the OpenMP
implementation was used. The GPU was programmed with OpenCL. Each point of the
graph has three components a minimal, maximal, and average value. The minimal and
maximal values are illustrated as the shaded area behind the graph. The average value
is marked with a dot.

58

7 Cross-Architecture Comparison

Figure 7.1: GPU, CPU and FPGA Execution Times for 128 Integration Steps

Figure 7.2: GPU, CPU and FPGA Execution Times for 4096 Integration Steps

59

7 Cross-Architecture Comparison

Figure 7.3: GPU, CPU and FPGA Execution Times for 32768 Integration Steps

Figure 7.4: GPU, CPU and FPGA Execution Times for 131072 Integration Steps

60

7 Cross-Architecture Comparison

7.3 Discussion

This part of the thesis discusses the performance results of section 7.2 for the different
hardware architectures. It is important to know that an out-of-the-box study created
the results. Therefore, these results show only the first tendencies for choosing the best
fitting architecture for each problem size. In order to be able to draw clear conclusions,
further analyzes are essential.

7.3.1 Deviations

The execution time graphs show clearly that the CPUs have the most significant
deviation for almost every run configuration. Only for 131072 integration steps and
32768 IVPs the FPGA execution time is a bit more volatile. Very uncommon are the
immense differences of the CPU run time in minor problems in Figure 7.1, mainly
because the FPGA and GPU have almost no deviation. The GPU has, on average, the
most consistent execution times. Only for a larger number of integration steps, like in
Figure 7.3 or 7.4 the results slightly differ.

7.3.2 Performance

For a small or middle sized number of integration steps, like 128 or 4096, the GPU and
FPGA performance better than the CPU, see Figures 7.1 and 7.2. For 128 integration
steps, this performance difference is even more significant. The CPU can only keep
up at this problem size for the 4096 integration steps and a very tiny number of IVPs
like 128. For a larger number of integration steps, the CPU performance increases
relative to the FPGA and GPU. Figure 7.3 shows that for 32768 integration steps, the
CPU outperforms the FPGA for all problem sizes smaller than 2048 or greater than or
equal to 16384. For an even larger number of integration steps, there is no interval at
which the FPGA runs faster than the CPU. Only for 4096 and 8192 ISs both perform
equally. This observation is illustrated in figure 7.4. The GPU-CPU comparison for this
larger size of integration steps shows that the CPU can only perform slightly better
than the GPU for a very small number of IVPs. For an increasing number of IVPs, the
GPU runs again faster than the CPU. For almost every run configuration, the GPU has
shorter execution times than the FPGA. While the performance differences are very
significant for a larger number of IVPs and integration steps, this is not true for smaller
problem sizes. For 131072 integration steps with 4096 or 8192 IVPs the FPGA performs
as well as the GPU.
In general, the result shows that for almost every problem size the GPUs have the best
performance or are very close to the best performing system. Furthermore, the results

61

7 Cross-Architecture Comparison

point out that the FPGA can keep up with the other system for some run configurations
in core compute power. Unfortunately, we did not manage to get an execution time of
the FPGA which is significantly better than those of the other hardware architecture. A
deeper investigation of this will be part of future work including a comparison with
other performance tests like energy efficiency.

62

8 Further Research

The main focus of this thesis was to extend the TIDOWA system to support FPGAs.
Furthermore, it tested the performance of different optimization techniques and com-
pared the results with CPU and GPU implementations. The results of the comparison
form a reasonable basis for further research. FPGAs are a relatively new topic in this
research area. Therefore, there are many opportunities to continue this work. Which
topics future work can address are explained in the following sections.

8.1 Optimizing Memory Access

The current performance testing only stores the last value of the integration. This
restriction was made to test the core compute performance. Initial tests have shown
that the global memory access in every iteration of the integration loop is a clear
bottleneck. The version with vectorization and multiple compute units could not
perform significantly better than the default implementation. To provide good run
times for executions that store every value, the global memory access needs to be
optimized. For example, this could be achieved by adding a local buffer. The calculated
values are not written back directly to global memory. The local buffer stores them
temporally until it is full. The buffer is then written back to global memory. This
modification reduces the access to global memory significantly and could increase the
performance.

8.2 NDRange vs. Single Work-Item

The implementing of OpenCL for FPGA uses the NDRagne model. Future work could
extend this to support also the single work-item model. It would be interesting to
research the best fitting model for each ODE system and run configuration.

8.3 Fixed- vs. Floating-Point Calculation

The kernel report comparison in Section 5.3 has shown that the major part of hardware
resources is consumed by the floating-point operations in the integration loop. This

63

8 Further Research

limits the factor of vectorization, unrolling, or the number of compute units that can be
applied to the kernel. There are two options to reduce this resource consumption. The
current implementation uses a double-precision representation. This could be changed
to single-precision. The second option is to switch to a fixed-point representation. Both
versions would use tremendously less hardware than the double-precision implementa-
tion. This opens up the opportunity to increase the factor of vectorization, unrolling, or
the number of compute units. Of course, it is indispensable to compare the accuracy of
the different versions.

8.4 Detailed Performance Profiling

The Intel FPGA SDK for OpenCL offers the option to implement performance counts
into the design. These counts collect data during the kernel execution. With the Intel
VTune Profiler, this data can be analyzed to find the bottleneck of the implementation.
Profiling the performance in detail becomes especially important for the global memory
access optimization explained in Section 8.1.

64

9 Conclusion

Heterogeneous architectures become increasingly important for HPC. To solve a prob-
lem as quickly and efficiently as possible, it is necessary to select the best fitting
component of a heterogeneous system. Which architecture is best suited heavily de-
pends on the type of problem. Therefore, it is essential to research this.
The focus of this thesis was to develop an ODE solver optimized for FPGAs and inte-
grate the implementation into the TIDOWA system. Furthermore, it was the goal to
test the relevance of these solvers compared to other systems.
This thesis initially explained how FPGAs are constructed and showed what the market
for FPGAs currently offers. Further, it demonstrated how development tools like the
Intel FPGA SDK for OpenCL can be used. It expounded which optimizations can
be applied to FPGA specific OpenCL code. Furthermore, the thesis illustrated how
these optimizations affect the used hardware resources and accelerate the execution.
The results showed that a combination of different techniques performs better than
using only one optimization with a high optimization factor. These outcomes build a
sound basis for further implementations and research. By analyzing the used hardware
resources, it is now easier to predict whether a compilation of a new design completes
successfully.
The results were then compared to those of the CPU and GPU execution. The compari-
son revealed that for smaller problems, the FPGA implementation performed better
than the CPU and almost as good as the GPU implementation. In contrast, for larger
problem sizes, the FPGA gets outperformed by the two other architectures. The results
were crated by an out-of-the-box study, therefore to draw clear conclusions, further
research is required. The results only show a first tendency to which problem each
architecture fits the best. This thesis has built an essential foundation in developing
efficient ODE solvers for FPGA systems.

65

Bibliography

[1] A New FPGA Architecture and Leading-Edge FinFET Process Technology Promise to
Meet Next-Generation System Requirements. WP-01220-1.4. Intel. 2019.

[2] E. Avramidis and O. E. Akman. “Optimisation of an exemplar oculomotor model
using multi-objective genetic algorithms executed on a GPU-CPU combination.”
In: BMC systems biology 11.1 (2017), pp. 1–23.

[3] S. Bals. “Development of a domain-specific language for the efficient time inte-
gration of ODEs.” In: (2019).

[4] V. Betz. FPGA Architecture for the Challenge. url: https://www.eecg.utoronto.
ca/~vaughn/challenge/fpga_arch.html. (accessed: 02.03.2021).

[5] P. Biswas. Introduction to FPGA and its Architecture. url: https://towardsdatascience.
com/introduction-to-fpga-and-its-architecture-20a62c14421c. (accessed:
02.03.2021).

[6] H.-J. Bungartz. Lecture notes in "Numerisches Programmieren" (IN0019). 2019.

[7] M. Fuchs. “Geschichte und Einführung in Aufbau und Arbeitsweise von FPGA.”
In: (2003).

[8] Intel. Intel Agilex I-Series SoC FPGA Product Table. url: https://www.intel.de/
content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-
i-series-product-table.pdf. (accessed: 14.04.2021).

[9] Intel. Intel FPGAs. url: https://www.intel.de/content/www/de/de/products/
programmable/fpga.html. (accessed: 10.04.2021).

[10] Intel. Intel Stratix 10 DX FPGAs. Intel. url: https://www.intel.de/content/
www/de/de/products/programmable/sip/stratix- 10- dx.html. (accessed:
19.03.2021).

[11] Intel. Intel Stratix 10 DX Product Table. 2019. url: https://www.intel.de/
content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-dx-
product-table.pdf. (accessed: 19.03.2021).

[12] Intel. Intel Stratix 10 FPGA Features. Intel. 2019. url: https://www.intel.de/
content/www/de/de/products/programmable/fpga/stratix-10/features.
html. (accessed: 17.03.2021).

66

https://www.eecg.utoronto.ca/~vaughn/challenge/fpga_arch.html
https://www.eecg.utoronto.ca/~vaughn/challenge/fpga_arch.html
https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c
https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-i-series-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-i-series-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-i-series-product-table.pdf
https://www.intel.de/content/www/de/de/products/programmable/fpga.html
https://www.intel.de/content/www/de/de/products/programmable/fpga.html
https://www.intel.de/content/www/de/de/products/programmable/sip/stratix-10-dx.html
https://www.intel.de/content/www/de/de/products/programmable/sip/stratix-10-dx.html
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-dx-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-dx-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-dx-product-table.pdf
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/features.html
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/features.html
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/features.html

Bibliography

[13] Intel. Intel Stratix 10 GX FPGAs. Intel. url: https://www.intel.de/content/
www/de/de/products/programmable/fpga/stratix-10/gx.html. (accessed:
19.03.2021).

[14] Intel. Intel Stratix 10 GX/SX Product Table. url: https://www.intel.de/content/
dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-
table.pdf. (accessed: 17.03.2021).

[15] Intel. Intel Stratix 10 MX (DRAM System-In-Package) Product Table. url: https:
//www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/
pt/stratix-10-mx-product-table.pdf. (accessed: 19.03.2021).

[16] Intel. Intel Stratix 10 MX FPGAs. Intel. url: https://www.intel.de/content/
www/de/de/products/programmable/sip/stratix- 10- mx.html. (accessed:
19.03.2021).

[17] Intel. Intel Stratix 10 NX FPGAs. Intel. url: https://www.intel.de/content/
www/de/de/products/programmable/fpga/stratix-10/nx.html. (accessed:
19.03.2021).

[18] Intel. Intel Stratix 10 SX SoC FPGAs. Intel. url: https : / / www . intel . de /
content/www/de/de/products/programmable/soc/stratix-10.html. (accessed:
19.03.2021).

[19] Intel. Intel Stratix 10 TX FPGAs. Intel. url: https://www.intel.de/content/
www/de/de/products/programmable/fpga/stratix-10/tx.html. (accessed:
19.03.2021).

[20] Intel. Intel Stratix 10 TX Product Table. 2019. url: https://www.intel.de/
content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-tx-
product-table.pdf. (accessed: 19.03.2021).

[21] Intel FPGA Programmable Acceleration Card D5005. Intel. 2021. url: https://www.
intel.com/content/www/us/en/programmable/products/boards_and_kits/
dev- kits/altera/intel- fpga- pac- d5005/documentation.html. (accessed:
06.04.2021).

[22] Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide. UG-OCL003. Intel.
2020.

[23] Intel FPGA SDK for OpenCL Pro Edition Getting Started Guide. UG-OCL001. Intel.
2020.

[24] Intel FPGA SDK for OpenCL Pro Edition Programming Guide. UG-OCL002. Intel.
2020.

[25] Intel Stratix 10 Logic Array Blocks and Adaptive Logic Modules User Guide. UG-
S10LAB. Intel. Apr. 2020.

67

https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/gx.html
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/gx.html
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-mx-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-mx-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-mx-product-table.pdf
https://www.intel.de/content/www/de/de/products/programmable/sip/stratix-10-mx.html
https://www.intel.de/content/www/de/de/products/programmable/sip/stratix-10-mx.html
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/nx.html
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/nx.html
https://www.intel.de/content/www/de/de/products/programmable/soc/stratix-10.html
https://www.intel.de/content/www/de/de/products/programmable/soc/stratix-10.html
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/tx.html
https://www.intel.de/content/www/de/de/products/programmable/fpga/stratix-10/tx.html
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-tx-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-tx-product-table.pdf
https://www.intel.de/content/dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-tx-product-table.pdf
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-d5005/documentation.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-d5005/documentation.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-d5005/documentation.html

Bibliography

[26] T. Lei. “Optimization of Parametrized High-Dimensional ODE Simulations.” In:
(2020).

[27] mikrocontroller. FPGA. url: https://www.mikrocontroller.net/articles/
FPGA. (accessed: 02.03.2021).

[28] R. Miron. FPGA-Grundlagen: Funktionsweise und Einsatzmöglichkeiten. url: https:
//www.elektronikpraxis.vogel.de/fpga-grundlagen-funktionsweise-und-
einsatzmoeglichkeiten-a-906696/. (accessed: 02.03.2021).

[29] A. Munshi, ed. The OpenCL Specification. Khronos Group, 2009.

[30] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno. “Efficient FPGA imple-
mentation of OpenCL high-performance computing applications via high-level
synthesis.” In: IEEE Access 5 (2017), pp. 2747–2762.

[31] A. van der Ploeg. Why use an FPGA instead of a CPU or GPU? url: https:
//blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-
b234cd4f309c. (accessed: 02.03.2021).

[32] A. Sanaullah and M. C. Herbordt. “Fpga hpc using opencl: Case study in 3d fft.”
In: Proceedings of the 9th International Symposium on Highly-Efficient Accelerators and
Reconfigurable Technologies. 2018, pp. 1–6.

[33] M. Schreiber. Lecture notes in Selected Topics in Algorithms and Scientific Computing
(IN3400, IN3480). 2020.

[34] techpowerup. NVIDIA GeForce RTX 3090. 2020. url: https://www.techpowerup.
com/gpu-specs/geforce-rtx-3090.c3622. (accessed: 18.03.2021).

[35] M. Vestias and H. Neto. “Trends of CPU, GPU and FPGA for high-performance
computing.” In: 2014 24th International Conference on Field Programmable Logic and
Applications (FPL). IEEE. 2014, pp. 1–6.

[36] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson. “Comparing hard-
ware accelerators in scientific applications: A case study.” In: IEEE Transactions
on Parallel and Distributed Systems 22.1 (2010), pp. 58–68.

[37] Q. Wu, Y. Ha, A. Kumar, S. Luo, A. Li, and S. Mohamed. “A heterogeneous
platform with GPU and FPGA for power efficient high performance computing.”
In: 2014 International Symposium on Integrated Circuits (ISIC). IEEE. 2014, pp. 220–
223.

[38] Xilinx. UltraScale+ FPGAs Product Tables and Product Selection Guide. url: https:
//www.xilinx.com/support/documentation/selection-guides/ultrascale-
plus-fpga-product-selection-guide.pdf#VUSP. (accessed: 19.03.2021).

68

https://www.mikrocontroller.net/articles/FPGA
https://www.mikrocontroller.net/articles/FPGA
https://www.elektronikpraxis.vogel.de/fpga-grundlagen-funktionsweise-und-einsatzmoeglichkeiten-a-906696/
https://www.elektronikpraxis.vogel.de/fpga-grundlagen-funktionsweise-und-einsatzmoeglichkeiten-a-906696/
https://www.elektronikpraxis.vogel.de/fpga-grundlagen-funktionsweise-und-einsatzmoeglichkeiten-a-906696/
https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c
https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c
https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-gpu-b234cd4f309c
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf#VUSP
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf#VUSP
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf#VUSP

Bibliography

[39] Xilinx. Xilinx FPGAs. url: https : / / www . xilinx . com / products / silicon -
devices/fpga.html. (accessed: 10.04.2021).

[40] Xilinx. Xilinx Virtex UltraScale+. Xilinx. url: https://www.xilinx.com/products/
silicon-devices/fpga/virtex-ultrascale-plus.html. (accessed: 19.03.2021).

[41] Xilinx. Xilinx Virtex UltraScale+ 58G. Xilinx. url: https://www.xilinx.com/
products/silicon-devices/fpga/virtex-ultrascale-plus-58g.html. (ac-
cessed: 19.03.2021).

[42] Xilinx. Xilinx Virtex UltraScale+ HBM. Xilinx. url: https://www.xilinx.com/
products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html. (ac-
cessed: 19.03.2021).

[43] Xilinx. Xilinx Virtex UltraScale+ VU19P. Xilinx. url: https://www.xilinx.
com/products/silicon-devices/fpga/virtex-ultrascale-plus-vu19p.html.
(accessed: 19.03.2021).

[44] C. Yang, J. Sheng, R. Patel, A. Sanaullah, V. Sachdeva, and M. C. Herbordt.
“OpenCL for HPC with FPGAs: Case study in molecular electrostatics.” In: 2017
IEEE High Performance Extreme Computing Conference (HPEC). IEEE. 2017, pp. 1–8.

[45] H. R. Zohouri. “High performance computing with FPGAs and OpenCL.” In:
(2018).

69

https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-58g.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-58g.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-vu19p.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-vu19p.html

	Acknowledgments
	Abstract
	Glossary
	Contents
	Introduction
	ODEs, Integration and IVPs
	Goal of the thesis: FPGA relevance for ODE Solvers

	FPGA Systems
	Introduction to FPGA Systems
	Architecture and Basic Components
	Comparison with CPU, GPU and ASIC

	Related Work: FPGA in HPC
	Intel vs. Xilinx FPGAs
	Device Family Comparison
	Stratix 10 vs. Virtex UltraScale+
	Design Decision for Intel

	Programmability of FPGA Systems
	OpenCL Architecture
	Hardware Description Languages
	Reasons for Design-Decision using OpenCL

	FPGA Development Tools and Design Example
	Work Flow of Intel FPGA SDK for OpenCL
	Intel Matrix Multiplication

	TIDOWA
	Discretisation
	Automatic Code Generation
	Compilation
	Execution

	FPGA in TIDOWA
	Host Side Implementation
	OpenCL Initialisation
	Start OpenCL Kernel Execution
	Finish OpenCL

	Kernel Side Implementation
	Kernel Function
	Index Initialisation
	Array and Variable Initialisation
	Main Calculation Loop
	Result Write-Back to Global Memory

	Kernel optimization Techniques
	Loop unrolling
	Specifying required or maximal Work-Group Size
	Specifying Compute Units
	Specifying SIMD Work-Items
	Floating-Point Optimization
	Avoid Pointer Aliasing

	Integration of OpenCL for FPGA into TIDOWA
	Automatic Code Generation
	Compilation
	Execution
	Automatic FPGA Optimization

	Evaluations of Optimizations based on Kernel Reports
	Default Optimization Techniques
	Default
	Static Loop Unrolling
	Integration Loop Unrolling
	Kernel Attributes
	Floating-Point Optimization

	Combined Optimization Techniques
	Maximal Vectorization
	Vectorization and Compute Units
	Unrolling Integration Loop with Floating-Point Optimization
	Vectorization, Compute Units and Unrolling

	Kernel Report Comparison

	Performance Testing
	Utilized FPGA System
	Testing Procedure
	Test Cases
	Results
	Discussion

	Cross-Architecture Comparison
	CPU, GPU Description
	Results
	Discussion
	Deviations
	Performance

	Further Research
	Optimizing Memory Access
	NDRange vs. Single Work-Item
	Fixed- vs. Floating-Point Calculation
	Detailed Performance Profiling

	Conclusion
	Bibliography

