3D Spherical based Segmentation and Registration

Martin Schreiber
martin.schreiber@in.tum.de

December 2, 2008
(1) Introduction

- Motivation
- Simulation
(2) Filters
- Overview
(3) Sphere
(4) Gradient
(5) Particles
(6) Graph
(7) Matching
(8) Efficient implementation
- Sphere filter with FFT
- Restricting Transformation Matrices
(9) Results
- Possible improvements
(10) References

Comparing CT datasets

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices. - - matching a large amount of points created by edge detection - - computing the difference of every data domain voxel
- \Rightarrow Use (blood) vessels as (more) characteristic data with less

Comparing CT datasets

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices. - - matching a large amount of points created by edge detection - - computing the difference of every data domain voxel
- \Rightarrow Use (blood) vessels as (more) characteristic data with less

Comparing CT datasets

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices...
- - matching a large amount of points created by edge detection
- - computing the difference of every data domain voxel
- - ...
- \Rightarrow Use (blood) vessels as (more) characteristic data with less

Comparing CT datasets

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices...
- - matching a large amount of points created by edge detection
- - computing the difference of every data domain voxel
- - ...
- \Rightarrow Use (blood) vessels as (more) characteristic data with less data for representation

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

- Simulate the movement of spheres through vessels touching the borders like a chimney-sweeper
- Sphere radii are variable and grow/shrink to touch the vessel borders
- Spheres stay in the center of the vessels
- The radius of the sphere representing the blood vessels is stored at each center point
- Direct implementation would be too inefficient due to collision tests, realignment of sphere, etc.

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

- Simulate the movement of spheres through vessels touching the borders like a chimney-sweeper
- Sphere radii are variable and grow/shrink to touch the vessel borders
- Spheres stay in the center of the vessels
- The radius of the sphere representing the blood vessels is stored at each center point

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

- Simulate the movement of spheres through vessels touching the borders like a chimney-sweeper
- Sphere radii are variable and grow/shrink to touch the vessel borders
- Spheres stay in the center of the vessels
- The radius of the sphere representing the blood vessels is stored at each center point
- Direct implementation would be too inefficient due to collision tests, realignment of sphere, etc.

Simulation of Sphere movement by different Filters

- Raw CT data

- Growing Spheres
- Computation of Gradient
- Particle emission

Simulation of Sphere movement by different Filters

- Raw CT data
- Growing Spheres

Simulation of Sphere movement by different Filters

- Raw CT data
- Growing Spheres
- Computation of Gradient

Simulation of Sphere movement by different Filters

- Raw CT data
- Growing Spheres
- Computation of Gradient
- Particle emission

Spheres - Window

- Values for coronary contrast media are usually within a specific window

Spheres - Threshold flag field

1	1	1	1					
1	1	1	1	1	1			
1	1	1	1	1				
1		1	1	1	1	1		
		1	1	1	1	1	1	1
		1	1	1	1	1	1	1
				1	1	1	1	1
							1	1
	1						1	

- Thresholding CT data by the window range [win min ; win $_{\text {max }}$]
- Flag field speeds up computations
- Important for convolution in frequency room (later)
- Typical values for coronary contrast media: [150; 1000]

$$
\text { FlagData }_{\text {pos }}= \begin{cases}1 & \text { win }_{\text {min }}<\text { value }_{\text {pos }}<\text { win }_{\max } \\ 0 & \text { else }\end{cases}
$$

Spheres - First spherical test

1	1	1	1					
1	1	1	1	1	1			
1	1	1	1	1				
1		1	1	1		1		
		1	1	1	1	1	1	1
		1		1	1	1	1	1
				1	1	1	1	1
							1	1
	1						1	

- Avoiding early stop of spherical growing on noisy data:
- Start with a radius StartRadius
- Abort if there are too many mismatching flags within the sphere
- Output value SphereData $_{\text {pos }}$ of current voxel is set to $\mathbf{0}$ if first spherical test was not successful

Start sphere abort criteria

$$
\frac{\sum_{\text {pos } \in \text { StartSphere }} \text { FlagData }_{\text {pos }}}{\mid \text { Voxels in Sphere } \mid}<\text { MaxMismatch }
$$

Spheres - Growing spheres, radius 3

1	1	1	1					
1	1	1	1	1	1			
1	1	1	1	1	1			
1		1	1	1	1	1		
		1	1	1	1	1	1	1
		1	1	1	1	1	1	1
				1	1	1	1	1
						1	1	
	1						1	

- If there was no output data set continue growing the sphere
- Growing is stopped if too many mismatching voxels on the sphere surface exceed a specific error value
- Output value SphereDatapos is set to the current sphere radius if the abort criteria is met

Sphere growing abort criteria

Spheres - Growing spheres, radius 4

5	3	3	2					
3	3	3	2					
2	2	3	2	2				
		2	3	3	2			
			2	3	2	2		
			2	2	3	2	2	2
				2	2	2	2	2
						2	2	3
							2	2

Left: Mismatch value $9 / 16$ exceeds the allowed rate MaxMismatch Middle: Stored radius values after applying spherical filter
Right: Spherical dataset created by the spherical filter

- Sphere growing for every voxel returns data set with the following properties:
- The sphere radii represent the blood vessels with a diameter of at least 2. StartRadius
- Blood vessels could be reconstructed with the spherical dataset by joining the sphere volumes
- Spheres totally covered by larger spheres can be dropped if we are only interested in a representative data for blood vessels

Gradient - Computation

5	3	3	2					
3	3	3	2					
2	2	3	2	2				
		2	3	3	2			
			2	3	2	2		
			2	2	3	2	2	2
				2	2	2	2	2
						2	2	3
							2	2

$$
\begin{array}{c|c|c|c|c|c|c|c|c}
0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 \\
\hline 0,0 & 0,1 & -1,0 & -3,0 & -2,2 & 0,0 & 0,0 & 0,0 & 0,0 \\
\hline 0,0 & 1,3 & 0,1 & -1,-1-2,-2 \cdot 3 & -2,2 & 0,0 & 0,0 & 0,0 \\
\hline 0,0 & 2,2 & 3,3 & 1,0 & -1,-1 & -3,-2 & -2,2 & 0,0 & 0,0 \\
\hline 0,0 & 0,0 & 2,2 & 3,1 & 0,1 & -1,-1 & -2,-2 & -2,-2 & 0,0 \\
\hline 0,0 & 0,0 & 2,0 & 2,2 & 1,1 & 0,0 & -1,0 & 0,-2 & 0,0 \\
\hline 0,0 & 0,0 & 0,0 & 2,2 & 2,2 & 0,3 & 0,0 & 0,0 & 0,0 \\
\hline 0,0 & 0,0 & 0,0 & 0,0 & 0,2 & 2,2 & 2,2 & 1,2 & 0,0 \\
\hline 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0
\end{array}
$$

Gradient computation with central differences

$$
\begin{aligned}
& \text { GradientData }_{\text {pos }}=\left(\begin{array}{l}
\frac{\delta \text { SphereData }_{\text {pos }}}{\delta \times} \\
\frac{\delta \text { Spheréata }_{\text {pos }}}{\delta y} \\
\frac{\delta \text { SphereData }_{\text {pos }}}{\delta z}
\end{array}\right) \\
& =\left(\begin{array}{l}
\text { SphereData }_{\text {pos }+(1,0,0)}-\text { SphereData }_{\text {pos }-(1,0,0)} \\
\text { SphereData }_{\text {pos }+(0,1,0)}-\text { SphereData }_{\text {pos }-(0,1,0)} \\
\text { SphereData }_{\text {pos }+(0,0,1)}-\text { SphereData }_{\text {pos }-(0,0,1)}
\end{array}\right) \cdot 0.5
\end{aligned}
$$

Gradient - Meaning

Gradient vectors scaled by 2

0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
0,0	0,1	$-1,0$	$-3,0$	$-2,-2$	0,0	0,0	0,0	0,0
0,0	1,3	0,1	$-1,-1$	$-2,-3$	$-2,-2$	0,0	0,0	0,0
0,0	2,2	3,3	1,0	$-1,-1$	$-3,-2$	$-2,-2$	0,0	0,0
0,0	0,0	2,2	3,1	0,1	$-1,-1$	$-2,-2$	$-2,-2$	0,0
0,0	0,0	2,0	2,2	1,1	0,0	$-1,0$	$0,-2$	0,0
0,0	0,0	0,0	2,2	2,2	0,3	0,0	0,0	0,0
0,0	0,0	0,0	0,0	0,2	2,2	2,2	1,2	0,0
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

\wedge	<	<	L				
1	\wedge	L	V	L			
1	7	$>$	L	V	L	L	
	1	7	\wedge	L		$\llcorner\llcorner$	\llcorner
		7	1			$<$	<
		1	1	\wedge	\wedge		
			\wedge	1	17	7	1

- Gradients aim to the local center of largest sphere in neighborhood
\Rightarrow Can be used for efficient simulation of origin problem
- Growing the sphere forces movement to the center of vessel
- Movement direction is given by gradient
- Gradient can be smoothed if sphere data has a high frequency

Particles - Emission and movement

Particle emission and movement along the gradient

\wedge	$<$	<	L					
1	\wedge	L	V	L				
7	7	$>$	L	V		L		
	7	7	\wedge	L		L	L	
		7	7			<	<	
		1	7	\wedge				
			\wedge	7	77	7	1	

- Emit particles starting on voxels with sphere > MinEmissionRadius
- MinEmissionRadius avoids emitting particles in small vessels (for registration unnecessary) and positive-false segmented areas like bones
- Particles follow the local gradient vector
- Length of gradient vector is small at the center of vessels
- Particle stops if the length of gradient vector is below a specific value

Particles - Emission and movement

Particle emission and movement along the gradient

\wedge	$<$	<	L				
1	\wedge	L	V	L			
7	7	$>$	L	V	L	L	
	7	7	\wedge	L	L		L
		7	1				<
		7	1	\wedge			
			\wedge	7	7	7	1

- Emit particles starting on voxels with sphere > MinEmissionRadius
- MinEmissionRadius avoids emitting particles in small vessels (for registration unnecessary) and positive-false segmented areas like bones
- Particles follow the local gradient vector
- Length of gradient vector is small at the center of vessels
- Particle stops if the length of gradient vector is below a specific value

Graph - Construction

Graph reconstruction

- Representing blood vessels by graphs
- Radius is also stored for each node for advanced registration
- Reduces matching of the large particle amount to matching of sparse graph nodes

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

- Each particle has a flag used which is set if the particle is already represented by an edge
- Search for neighbored particle within a specific range [min_dist, max_dist] where the used flag is not yet set
- Take particle which is furthest away as node NextNode
- Set used flag for all particles within the range max_dist
- Continue at the node NextNode

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

- Each particle has a flag used which is set if the particle is already represented by an edge
- Search for neighbored particle within a specific range [min_dist, max_dist] where the used flag is not yet set
- Take particle which is furthest away as node NextNode
- Set used flag for all particles within the range max_dist
- Continue at the node NextNode

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

- Each particle has a flag used which is set if the particle is already represented by an edge
- Search for neighbored particle within a specific range [min_dist, max_dist] where the used flag is not yet set
- Take particle which is furthest away as node NextNode
- Set used flag for all particles within the range max_dist

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

- Each particle has a flag used which is set if the particle is already represented by an edge
- Search for neighbored particle within a specific range [min_dist, max_dist] where the used flag is not yet set
- Take particle which is furthest away as node NextNode
- Set used flag for all particles within the range max_dist
- Continue at the node NextNode

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

Start Node

- Start each edge construction at unused particle with maximum radius \Rightarrow First node can have 2 neighbors
- Setting all used flags of first node within the range max_dist avoids creating edges in the opposite direction
- \Rightarrow Set used flags only for particles which are also in the range max_dist of NextNode
- After creation of a stripline "in one direction", restart again

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

- Start each edge construction at unused particle with maximum radius \Rightarrow First node can have 2 neighbors
- Setting all used flags of first node within the range max_dist avoids creating edges in the opposite direction
- \Rightarrow Set used flags only for particles which are also in the range max_dist of NextNode
- After creation of a stripline "in one direction", restart again

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

- Start each edge construction at unused particle with maximum radius \Rightarrow First node can have 2 neighbors
- Setting all used flags of first node within the range max_dist avoids creating edges in the opposite direction
- \Rightarrow Set used flags only for particles which are also in the range max_dist of NextNode

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

- Start each edge construction at unused particle with maximum radius \Rightarrow First node can have 2 neighbors
- Setting all used flags of first node within the range max_dist avoids creating edges in the opposite direction
- \Rightarrow Set used flags only for particles which are also in the range max_dist of NextNode
- After creation of a stripline "in one direction", restart again at first node to extend stripline in opposite direction

Graph - Construction - Step 3 of 3

Connecting strips to graphs

- The Gradient is very high on vessel forkings \Rightarrow strips are disconnected
- Use particle emission to create a connection at forkings
- Particle is emitted with a displacement in the direction described by the two corner nodes
- This particle follows the gradient until the gradient value is below a specific value
- If there's a node N_{n} withir the range max_dist: connect corner node with node N_{n}

Graph - Construction - Step 3 of 3

Connecting strips to graphs

- The Gradient is very high on vessel forkings \Rightarrow strips are disconnected
- Use particle emission to create a connection at forkings
- Particle is emitted with a displacement in the direction described by the two corner nodes
- This particle follows the gradient until the gradient value is below a specific value
- If there's a node N_{n} within the range max_dist: connect corner node with node N_{n}

Matching - Terminology

Matching graphs

- Finding transformation matrix M
- Projecting nodes P from matching graph (applying matrix M for each point) results in points \mathbf{P} ' in "destination space"
- Minimize distance between nodes P' and nearest edge of destination graph

Matching - Terminology

Matching graphs

- Finding transformation matrix M
- Projecting nodes \mathbf{P} from matching graph (applying matrix M for each point) results in points \mathbf{P} ' in "destination space"
- Minimize distance between nodes P^{\prime} and nearest edge of destination graph

Matching

Transformation Matrix M projecting point P to P^{\prime} :

$$
M \cdot P=\left(\begin{array}{llll}
m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\
m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\
m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\
m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4}
\end{array}\right) \cdot P=P^{\prime}
$$

Transformation matrix M for 3D CT data can be computed with 4 nodes $P^{i}, P^{j}, P^{k}, P^{\prime}$ of source graph and 4 points $O^{i}, O^{j}, O^{k}, O^{\prime}$ of destination graph (given in homogeneous form)

$$
\begin{aligned}
& \left(\begin{array}{llll}
P_{x}^{i} & P_{y_{y}^{\prime}}^{i} & P_{z}^{i} & 1 \\
P_{x}^{j} & P_{j}^{j} & P_{z}^{j} & 1 \\
P_{x}^{k} & P_{x}^{k} & P_{z}^{k} & 1 \\
P_{x}^{\prime} & P_{y}^{I} & P_{z}^{l} & 1
\end{array}\right) \quad\left(\begin{array}{l}
m_{1,1} \\
m_{1,2} \\
m_{1,3} \\
m_{1,4}
\end{array}\right)=\left(\begin{array}{c}
O_{x}^{i} \\
O_{x}^{i} \\
O_{x}^{k} \\
O_{x}^{i}
\end{array}\right) \\
& \left(\begin{array}{llll}
P_{x}^{i} & P_{y}^{i} & P_{z}^{i} & 1 \\
P_{x}^{j} & P_{j}^{j} & P_{z}^{j} & 1 \\
P_{x}^{k} & P_{y}^{k} & P_{z}^{k} & 1 \\
P_{x}^{l} & P_{y}^{l} & P_{z}^{l} & 1
\end{array}\right) \quad\left(\begin{array}{l}
m_{2,1} \\
m_{2,2} \\
m_{2,3} \\
m_{2,4}
\end{array}\right)=\left(\begin{array}{l}
O_{y}^{i} \\
O_{y}^{j} \\
O_{y}^{k} \\
O_{y}^{i}
\end{array}\right) \\
& \left(\begin{array}{llll}
P_{x}^{i} & P_{y_{y}}^{i} & P_{z}^{i} & 1 \\
P_{x}^{j} & P_{j_{j}^{j}}^{j} & P_{z}^{j} & 1 \\
P_{x}^{k} & P_{y}^{k} & P_{z}^{k} & 1 \\
P_{x}^{l} & P_{y}^{l} & P_{z}^{l} & 1
\end{array}\right) \quad\left(\begin{array}{l}
m_{3,1} \\
m_{3,2} \\
m_{3,3} \\
m_{3,4}
\end{array}\right)=\left(\begin{array}{c}
o_{z}^{i} \\
o_{z}^{j} \\
o_{j}^{k} \\
O_{z}^{Z}
\end{array}\right)
\end{aligned}
$$

Matching - Matrix decomposition

- Creating a matrix based on all possible node combinations can produce unlikely mappings
- large shearings
- large scalings / negative scalings
- large rotations
- large translations
- Even an unlikely mapping can produce wrong matching with best computed matching
- Decompose matrix to basic transformations and restrict transformations

Matching - Matrix decomposition

- Creating a matrix based on all possible node combinations can produce unlikely mappings
- large shearings
- large scalings / negative scalings
- large rotations
- large translations
- Even an unlikely mapping can produce wrong matching with best computed matching
- Decompose matrix to basic transformations and restrict transformations

Matching - Matrix decomposition

- Creating a matrix based on all possible node combinations can produce unlikely mappings
- large shearings
- large scalings / negative scalings
- large rotations
- large translations
- Even an unlikely mapping can produce wrong matching with best computed matching
- Decompose matrix to basic transformations and restrict transformations

Matching - Matrix decomposition (cont')

- Matrix M is decomposed in
- 3 Translation components t_{x}, t_{y}, t_{z} by matrix T
- 3 Rotation matrices R_{n} around axis $\mathrm{n}: R_{x}, R_{y}, R_{z}$
- 3 Scaling components s_{x}, s_{y}, s_{z} with matrix S
- 3 Shearing components $s h_{1,2,3}$ in shearing matrix H
- $M=H \cdot S \cdot R_{z} \cdot R_{x} \cdot R_{y} \cdot T$
- Decompositions "simulate" different basic transformations
- First the translation is done to align both datasets
- Secondly the translated dataset is rotated around y axis for better matching
- Decomposition to basic transformations give the information for an "early drop" (omit the current matrix)

Matching - Matrix decomposition (cont')

- Matrix M is decomposed in
- 3 Translation components t_{x}, t_{y}, t_{z} by matrix T
- 3 Rotation matrices R_{n} around axis $\mathrm{n}: R_{x}, R_{y}, R_{z}$
- 3 Scaling components s_{x}, s_{y}, s_{z} with matrix S
- 3 Shearing components $s h_{1,2,3}$ in shearing matrix H
- $M=H \cdot S \cdot R_{z} \cdot R_{x} \cdot R_{y} \cdot T$
- Decompositions "simulate" different basic transformations
- First the translation is done to align both datasets
- Secondly the translated dataset is rotated around y axis for better matching
- ...
- Decomposition to basic transformations give the information for an "early drop" (omit the current matrix)

Matching - Translation

- Translation Matrix $T=\left(\begin{array}{cccc}1 & . & . & t_{x} \\ . & 1 & . & t_{y} \\ . & . & 1 & t_{z} \\ . & . & . & 1\end{array}\right)$
- Translation decomposition:

(Search values for T to eliminate the rightmost column)
- Computation of the rightmost column values of M gives the implicit solution for T

Matching - Translation

- Translation Matrix $T=\left(\begin{array}{cccc}1 & . & . & t_{x} \\ . & 1 & . & t_{y} \\ . & . & 1 & t_{z} \\ . & . & . & 1\end{array}\right)$
- Translation decomposition:

$$
M=M^{\prime} \cdot T=\left(\begin{array}{cccc}
m_{1,1} & m_{1,2} & m_{1,3} & 0 \\
m_{2,1} & m_{2,2} & m_{2,3} & 0 \\
m_{3,1} & m_{3,2} & m_{3,3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(Search values for T to eliminate the rightmost column)

- Computation of the rightmost column values of M gives the implicit solution for T

Matching - Translation

- Translation Matrix $T=\left(\begin{array}{cccc}1 & . & . & t_{x} \\ . & 1 & . & t_{y} \\ . & . & 1 & t_{z} \\ . & . & . & 1\end{array}\right)$
- Translation decomposition:

$$
M=M^{\prime} \cdot T=\left(\begin{array}{cccc}
m_{1,1} & m_{1,2} & m_{1,3} & 0 \\
m_{2,1} & m_{2,2} & m_{2,3} & 0 \\
m_{3,1} & m_{3,2} & m_{3,3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(Search values for T to eliminate the rightmost column)

- Computation of the rightmost column values of M gives the implicit solution for T

$$
\left(\begin{array}{lll}
m_{1,1} & m_{1,2} & m_{1,3} \\
m_{2,1} & m_{2,2} & m_{2,3} \\
m_{3,1} & m_{3,2} & m_{3,3}
\end{array}\right) \cdot\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)=\left(\begin{array}{l}
m_{1,4} \\
m_{2,4} \\
m_{3,4}
\end{array}\right)
$$

Matching - Rotation

Rotation matrices (example for given y axis):

- Use rotation matrices (from QR decomposition) to set values below diagonal to 0

$$
R_{y}=\left(\begin{array}{cccc}
\cos (\alpha) & 0 & \sin (\alpha) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\alpha) & 0 & \cos (\alpha) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Eliminating entry $m_{3,1}^{\prime \prime}$:

Assuming $m_{3,1}^{\prime \prime}$ should be set to 0 :

Matching - Rotation

Rotation matrices (example for given y axis):

- Use rotation matrices (from QR decomposition) to set values below diagonal to 0

$$
R_{y}=\left(\begin{array}{cccc}
\cos (\alpha) & 0 & \sin (\alpha) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\alpha) & 0 & \cos (\alpha) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Eliminating entry $m_{3,1}^{\prime \prime}$:

$$
M^{\prime}=M^{\prime \prime} \cdot R_{y} \Longleftrightarrow M^{\prime} \cdot R_{y}^{-1}=M^{\prime \prime}
$$

Assuming $m_{3,1}^{\prime \prime}$ should be set to 0 :

$$
0=m_{3,1}^{\prime} \cos (\alpha)-m_{3,3}^{\prime} \sin (\alpha) \Longleftrightarrow \alpha=\operatorname{atan}\left(\frac{m_{3,1}^{\prime}}{m_{3,3}^{\prime}}\right)
$$

Computation of R_{y} is done by using the inverted angle α

Matching - Scaling and Shearing

- Result after translation and rotation elimination is an upper diagonal matrix $M^{(3)}$
- Final decomposition returns the shearing and scaling matrix

$$
\begin{gathered}
M^{(3)}=H \cdot S \Longleftrightarrow \\
\left(\begin{array}{cccc}
m_{1,1}^{(3)} & m_{1,2}^{(3)} & m_{1,3}^{(3)} & \cdot \\
\cdot & m_{2,2}^{(3)} & m_{2,3}^{(3)} & \cdot \\
\cdot & \cdot & m_{3,3}^{(3)} & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & h_{1} & h_{2} & \cdot \\
\cdot & 1 & h_{3} & \cdot \\
\cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)\left(\begin{array}{cccc}
s_{x} & \cdot & \cdot & \cdot \\
\cdot & s_{y} & \cdot & \cdot \\
\cdot & \cdot & s_{z} & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right) \\
s_{x}=m_{1,1}^{(3)} \quad s_{y}=m_{2,2}^{(3)} \\
s_{z}=m_{3,3}^{(3)} \\
h_{1} \cdot s_{y} \\
=m_{1,2}^{(3)} \\
h_{2} \cdot s_{z}=m_{1,3}^{(3)} \Longleftrightarrow h_{1}=\frac{m_{1,2}^{(3)}}{s_{y}} \\
h_{3} \cdot s_{z}=h_{2,3}^{(3)}
\end{gathered}
$$

Matching

- To work with minimal transformations of permitted matrices, pretranslate the center of image to $(0,0,0)$
- Empirical values to match $256 \times 256 \times 200$ CT scans:
- maximum relative rotation angle: 90°
- scale factor $\in[0.7 ; 1.3]$
- shear factor $\in[-0.3 ; 0.3]$
- maximum relative translation: 100
- pretranslation matrix.

Matching

- To work with minimal transformations of permitted matrices, pretranslate the center of image to $(0,0,0)$
- Empirical values to match $256 \times 256 \times 200$ CT scans:
- maximum relative rotation angle: 90°
- scale factor $\in[0.7 ; 1.3]$
- shear factor $\in[-0.3 ; 0.3]$
- maximum relative translation: 100
- pretranslation matrix: $P=\left(\begin{array}{cccc}1 & 1 & . & -128 \\ \vdots & 1 & \vdots & -128 \\ \vdots & \vdots & 1 & -100 \\ \hline\end{array}\right)$

Matching - Computation of matching difference

- If the matrix is valid, nodes \mathbf{P} are projected to the destination graph space giving P^{\prime}
- For every projected node P^{\prime}, the nearest node $P^{\prime \prime}$ of the destination graph is searched
- For both adjacent nodes of $\mathrm{P}^{\prime \prime}$ the smallest distance to the edge is taken
- Best matching matrix M : Projection with the smallest sum of distances for all nodes P^{\prime} to the correspgnding edges $\overline{\underline{\Xi}}^{\underline{\underline{E}}}$

Matching - Computation of matching difference

- If the matrix is valid, nodes \mathbf{P} are projected to the destination graph space giving P^{\prime}
- For every projected node P^{\prime}, the nearest node $\mathrm{P}^{\prime \prime}$ of the destination graph is searched
- For both adjacent nodes of $\mathrm{P}^{\prime \prime}$ the smallest distance to the edge is taken
- Best matching matrix M : Projection with the smallest sum of distances for all nodes P^{\prime} to the corręsponding edges $s_{\overline{\underline{E}}}$

Matching - Computation of matching difference

- If the matrix is valid, nodes \mathbf{P} are projected to the destination graph space giving P^{\prime}
- For every projected node P^{\prime}, the nearest node $\mathrm{P}^{\prime \prime}$ of the destination graph is searched
- For both adjacent nodes of $\mathrm{P}^{\prime \prime}$ the smallest distance to the edge is taken
- Best matching matrix M : Projection with the smallest sum of distances for all nodes P^{\prime} to the corresponding edges

Efficient implementation

- Direct implementation would take more than half an hour to match a $256 \times 256 \times 200$ CT dataset to reference data - Sphere filter:
- Sphere filter has to be applied for every point!
- Graph filter:
- Storing a few particles with a full grid would be a waste of
memory
- Computation time for nearest points with $O\left(r^{d}\right)$ increases with resolution n^{d}
- Matching:
- Using naive approach for a graph with N nodes there would be

matching possibilities taking hours to
compute

Efficient implementation

- Direct implementation would take more than half an hour to match a $256 \times 256 \times 200$ CT dataset to reference data
- Sphere filter:
- Sphere filter has to be applied for every point!
- Graph filter:
- Storing a few particles with a full grid would be a waste of
memory
- Computation time for nearest points with $O\left(r^{d}\right)$ increases with resolution n^{d}
- Matching.
- Using naive approach for a graph with N nodes there would be

matching possibilities taking hours to
compute

Efficient implementation

- Direct implementation would take more than half an hour to match a $256 \times 256 \times 200$ CT dataset to reference data
- Sphere filter:
- Sphere filter has to be applied for every point!
- Graph filter:
- Storing a few particles with a full grid would be a waste of memory
- Computation time for nearest points with $O\left(r^{d}\right)$ increases with resolution n^{d}
- Matching
- Using naive approach for a graph with N nodes there would be

matching nossihilities taking hours to compute

Efficient implementation

- Direct implementation would take more than half an hour to match a $256 \times 256 \times 200$ CT dataset to reference data
- Sphere filter:
- Sphere filter has to be applied for every point!
- Graph filter:
- Storing a few particles with a full grid would be a waste of memory
- Computation time for nearest points with $O\left(r^{d}\right)$ increases with resolution n^{d}
- Matching
- Using naive approach for a graph with N nodes there would be

matching nossihilities taking hours to compute

Efficient implementation

- Direct implementation would take more than half an hour to match a $256 \times 256 \times 200$ CT dataset to reference data
- Sphere filter:
- Sphere filter has to be applied for every point!
- Graph filter:
- Storing a few particles with a full grid would be a waste of memory
- Computation time for nearest points with $O\left(r^{d}\right)$ increases with resolution n^{d}
- Matching:
- Using naive approach for a graph with N nodes there would be $O\left(\left(\frac{N!}{(N-4)!}\right)^{2}\right)$ matching possibilities taking hours to compute

Sphere filter using FFT

- Applying sphere filter is a convolution for each sphere size
- Convolution can be done very efficiently in frequency space, specially for large kernels

Sphere filter using FFT

FFT based on periodical data

- Boundary conditions: Data fields have to be padded with extra data to work with existing FFT libraries (e.g. FFTW)
- Applying the standard FFT is based on a periodical function
- Multiplying the kernel in frequency room would take values for spheres from opposite side

Sphere filter using FFT

FFT based on periodical data

- Boundary conditions: Data fields have to be padded with extra data to work with existing FFT libraries (e.g. FFTW)
- Applying the standard FFT is based on a periodical function
- Multiplying the kernel in frequency room would take values for spheres from opposite side

Sphere filter using FFT

FFT based on periodical data

- Boundary conditions: Data fields have to be padded with extra data to work with existing FFT libraries (e.g. FFTW)
- Applying the standard FFT is based on a periodical function
- Multiplying the kernel in frequency room would take values for spheres from opposite side
- Large spheres at borders don't represent the local data

Sphere filter using FFT

FFT based on symmetric data

- Using real data FFT assuming domain is symmetric on borders
- Introduced errors just depend on the local data
- Kernel has to be initialized for only $\frac{1}{8}$ of the data domain
- Reduces the computation from >20 minutes to a few seconds

Sphere filter using FFT

FFT based on symmetric data

- Using real data FFT assuming domain is symmetric on borders
- Introduced errors just depend on the local data
- Kernel has to be initialized for only $\frac{1}{8}$ of the data domain
- Reduces the computation from >20 minutes to a few seconds

Sphere filter using FFT

FFT based on symmetric data

Left: Symmetric data - Right: Kernel

- Using real data FFT assuming domain is symmetric on borders
- Introduced errors just depend on the local data
- Kernel has to be initialized for only $\frac{1}{8}$ of the data domain
- Reduces the computation from >20 minutes to a few seconds

Handling Particles with KD-Trees

KD-Tree

http://en.wikipedia.org/wiki/Image:3dtree.png

- KD Trees store arbitrary points using a tree like structure - Efficient operations to find points within a given radius

Handling Particles with KD-Trees

KD-Tree

http://en.wikipedia.org/wiki/Image:3dtree.png

- KD Trees store arbitrary points using a tree like structure
- Efficient operations to find points within a given radius
- \Rightarrow Graph can be constructed within a second

Restricting Transformation Matrices

- $O\left(\left(\frac{N!}{(N-4)!}\right)^{2}\right)$ matching possibilities
- Discretization of points introduce error ϵ_{1}
- Small anatomical differences of points introduce errors ϵ_{2}
- Error in matrix after construction becomes less for far distant points
- Use only nodes with a distance of at least δ to create a better conditioned problem
- \Rightarrow avoids the computation of the transformation matrix for many points
- Omitting impossible node combinations and nodes producing a bad conditioned problem decreases computation time to a few seconds

Restricting Transformation Matrices

- $O\left(\left(\frac{N!}{(N-4)!}\right)^{2}\right)$ matching possibilities
- Discretization of points introduce error ϵ_{1}
- Small anatomical differences of points introduce errors ϵ_{2}
- Error in matrix after construction becomes less for far distant points
- Use only nodes with a distance of at least δ to create a better conditioned problem
- \Rightarrow avoids the computation of the transformation matrix fc many points
- Omitting impossible node combinations and nodes producing a bad conditioned problem decreases computation time to a few seconds

Restricting Transformation Matrices

- $O\left(\left(\frac{N!}{(N-4)!}\right)^{2}\right)$ matching possibilities
- Discretization of points introduce error ϵ_{1}
- Small anatomical differences of points introduce errors ϵ_{2}
- Error in matrix after construction becomes less for far distant points
- Use only nodes with a distance of at least δ to create a better conditioned problem
- \Rightarrow avoids the computation of the transformation matrix for many points
- Omitting impossible node combinations and nodes producing a bad conditioned problem decreases computation time to a few seconds

Results

Matching 2D CT slices using only midpoints of edges as graph matching nodes

3D CT heart blood segmentation and registration:

- Can be handled in an efficient and fast way
- Takes just a few seconds on recent quad-core-systems
- Using translation matrices offers registration of invisible areas (yellow line in right image)

Possible improvements

- Use sparser representation of graph using extrapolation or spline curves
- Using interpolation with spherical filter (aliased kernel) for more accurate sphere radii
- Graph construction: include possible omitted nodes at strip endings
- Randomized/hierarchical matching points selection (maybe using hints of graph)
- Matching graphs
- Using heuristics from graphs for matching
- Comparing edge slopes
- Use matching positive abort if computed overall distance is below a certain value (assuming this is the correct matching)

Thank you for your

 attention

Any questions?

References and Links

- CT Datasets: Nuklearmed. Klinik der TU Muenchen, Germany
- FFTW: http://www.fftw.org/
- KD-Tree: http://libkdtree.alioth.debian.org/
- DICOM-Toolkit: http://dicom.offis.de/dcmtk.php.de

