
Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

3D Spherical based Segmentation and Registration

Martin Schreiber
martin.schreiber@in.tum.de

December 2, 2008



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

1 Introduction
Motivation
Simulation

2 Filters
Overview

3 Sphere

4 Gradient

5 Particles

6 Graph

7 Matching

8 Efficient implementation
Sphere filter with FFT
Restricting Transformation Matrices

9 Results
Possible improvements

10 References



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Comparing CT datasets

Selected CT slices from different patients showing similar areas
(Source: Nuklearmed. Klinik der TU Muenchen)

Comparing different CT datasets taken at different time

Matching of 3D datasets performed by hand takes a lot of
time

Existing algorithms work on projective matrices...
- matching a large amount of points created by edge detection
- computing the difference of every data domain voxel
- ...

⇒ Use (blood) vessels as (more) characteristic data with less
data for representation



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Comparing CT datasets

Selected CT slices from different patients showing similar areas
(Source: Nuklearmed. Klinik der TU Muenchen)

Comparing different CT datasets taken at different time

Matching of 3D datasets performed by hand takes a lot of
time

Existing algorithms work on projective matrices...
- matching a large amount of points created by edge detection
- computing the difference of every data domain voxel
- ...

⇒ Use (blood) vessels as (more) characteristic data with less
data for representation



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Comparing CT datasets

Selected CT slices from different patients showing similar areas
(Source: Nuklearmed. Klinik der TU Muenchen)

Comparing different CT datasets taken at different time

Matching of 3D datasets performed by hand takes a lot of
time

Existing algorithms work on projective matrices...
- matching a large amount of points created by edge detection
- computing the difference of every data domain voxel
- ...

⇒ Use (blood) vessels as (more) characteristic data with less
data for representation



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Comparing CT datasets

Selected CT slices from different patients showing similar areas
(Source: Nuklearmed. Klinik der TU Muenchen)

Comparing different CT datasets taken at different time

Matching of 3D datasets performed by hand takes a lot of
time

Existing algorithms work on projective matrices...
- matching a large amount of points created by edge detection
- computing the difference of every data domain voxel
- ...

⇒ Use (blood) vessels as (more) characteristic data with less
data for representation



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

Simulate the movement of spheres through vessels touching
the borders like a chimney-sweeper

Sphere radii are variable and grow/shrink to touch the
vessel borders

Spheres stay in the center of the vessels

The radius of the sphere representing the blood vessels is
stored at each center point

Direct implementation would be too inefficient due to collision
tests, realignment of sphere, etc.



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

Simulate the movement of spheres through vessels touching
the borders like a chimney-sweeper

Sphere radii are variable and grow/shrink to touch the
vessel borders

Spheres stay in the center of the vessels

The radius of the sphere representing the blood vessels is
stored at each center point

Direct implementation would be too inefficient due to collision
tests, realignment of sphere, etc.



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

Simulate the movement of spheres through vessels touching
the borders like a chimney-sweeper

Sphere radii are variable and grow/shrink to touch the
vessel borders

Spheres stay in the center of the vessels

The radius of the sphere representing the blood vessels is
stored at each center point

Direct implementation would be too inefficient due to collision
tests, realignment of sphere, etc.



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Simulation of Sphere movement by different Filters

• Raw CT data

• Growing Spheres

• Computation of Gradient

• Particle emission
• ...



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Simulation of Sphere movement by different Filters

• Raw CT data

• Growing Spheres

• Computation of Gradient

• Particle emission
• ...



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Simulation of Sphere movement by different Filters

• Raw CT data

• Growing Spheres

• Computation of Gradient

• Particle emission
• ...



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Simulation of Sphere movement by different Filters

• Raw CT data

• Growing Spheres

• Computation of Gradient

• Particle emission
• ...



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Spheres - Window

Values for coronary contrast media are usually within a
specific window



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Spheres - Threshold flag field

Thresholding CT data by the window range [winmin; winmax ]

Flag field speeds up computations
Important for convolution in frequency room (later)
Typical values for coronary contrast media: [150; 1000]

FlagDatapos =

{
1 winmin < valuepos < winmax

0 else



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Spheres - First spherical test

Avoiding early stop of spherical growing on noisy data:

Start with a radius StartRadius
Abort if there are too many mismatching flags within the
sphere
Output value SphereDatapos of current voxel is set to 0 if first
spherical test was not successful

Start sphere abort criteria∑
pos∈StartSphere

FlagDatapos

|Voxels in Sphere|
< MaxMismatch



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Spheres - Growing spheres, radius 3

If there was no output data set continue growing the sphere

Growing is stopped if too many mismatching voxels on the
sphere surface exceed a specific error value
Output value SphereDatapos is set to the current sphere
radius if the abort criteria is met

Sphere growing abort criteria∑
pos∈SphereSurface

FlagDatapos

|Sphere Surface|
< MaxMismatch



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Spheres - Growing spheres, radius 4

Left: Mismatch value 9/16 exceeds the allowed rate MaxMismatch
Middle: Stored radius values after applying spherical filter

Right: Spherical dataset created by the spherical filter

Sphere growing for every voxel returns data set with the
following properties:

The sphere radii represent the blood vessels with a diameter
of at least 2 · StartRadius
Blood vessels could be reconstructed with the spherical
dataset by joining the sphere volumes
Spheres totally covered by larger spheres can be dropped if we
are only interested in a representative data for blood vessels



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Gradient - Computation

⇒
Gradient computation with central differences

GradientDatapos =

0B@
δSphereDatapos

δx
δSphereDatapos

δy
δSphereDatapos

δz

1CA

=

0@SphereDatapos+(1,0,0) − SphereDatapos−(1,0,0)

SphereDatapos+(0,1,0) − SphereDatapos−(0,1,0)

SphereDatapos+(0,0,1) − SphereDatapos−(0,0,1)

1A · 0.5



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Gradient - Meaning

Gradient vectors scaled by 2

Gradients aim to the local center of largest sphere in
neighborhood
⇒ Can be used for efficient simulation of origin problem

Growing the sphere forces movement to the center of
vessel
Movement direction is given by gradient

Gradient can be smoothed if sphere data has a high frequency



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Particles - Emission and movement

Particle emission and movement along the gradient

Emit particles starting on voxels with
sphere > MinEmissionRadius
MinEmissionRadius avoids emitting particles in small
vessels (for registration unnecessary) and positive-false
segmented areas like bones
Particles follow the local gradient vector
Length of gradient vector is small at the center of vessels
Particle stops if the length of gradient vector is below a
specific value



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Particles - Emission and movement

Particle emission and movement along the gradient

Emit particles starting on voxels with
sphere > MinEmissionRadius
MinEmissionRadius avoids emitting particles in small
vessels (for registration unnecessary) and positive-false
segmented areas like bones
Particles follow the local gradient vector
Length of gradient vector is small at the center of vessels
Particle stops if the length of gradient vector is below a
specific value



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction

Graph reconstruction

Representing blood vessels by graphs

Radius is also stored for each node for advanced registration

Reduces matching of the large particle amount to matching
of sparse graph nodes



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

Each particle has a flag used which is set if the particle is
already represented by an edge
Search for neighbored particle within a specific range
[min dist,max dist] where the used flag is not yet set
Take particle which is furthest away as node NextNode
Set used flag for all particles within the range max dist
Continue at the node NextNode



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

Each particle has a flag used which is set if the particle is
already represented by an edge
Search for neighbored particle within a specific range
[min dist,max dist] where the used flag is not yet set
Take particle which is furthest away as node NextNode
Set used flag for all particles within the range max dist
Continue at the node NextNode



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

Each particle has a flag used which is set if the particle is
already represented by an edge
Search for neighbored particle within a specific range
[min dist,max dist] where the used flag is not yet set
Take particle which is furthest away as node NextNode
Set used flag for all particles within the range max dist
Continue at the node NextNode



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

Each particle has a flag used which is set if the particle is
already represented by an edge
Search for neighbored particle within a specific range
[min dist,max dist] where the used flag is not yet set
Take particle which is furthest away as node NextNode
Set used flag for all particles within the range max dist
Continue at the node NextNode



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

Start each edge construction at unused particle with
maximum radius ⇒ First node can have 2 neighbors

Setting all used flags of first node within the range max dist
avoids creating edges in the opposite direction

⇒ Set used flags only for particles which are also in the
range max dist of NextNode

After creation of a stripline ”in one direction”, restart again
at first node to extend stripline in opposite direction



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

Start each edge construction at unused particle with
maximum radius ⇒ First node can have 2 neighbors

Setting all used flags of first node within the range max dist
avoids creating edges in the opposite direction

⇒ Set used flags only for particles which are also in the
range max dist of NextNode

After creation of a stripline ”in one direction”, restart again
at first node to extend stripline in opposite direction



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

Start each edge construction at unused particle with
maximum radius ⇒ First node can have 2 neighbors

Setting all used flags of first node within the range max dist
avoids creating edges in the opposite direction

⇒ Set used flags only for particles which are also in the
range max dist of NextNode

After creation of a stripline ”in one direction”, restart again
at first node to extend stripline in opposite direction



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

Start each edge construction at unused particle with
maximum radius ⇒ First node can have 2 neighbors

Setting all used flags of first node within the range max dist
avoids creating edges in the opposite direction

⇒ Set used flags only for particles which are also in the
range max dist of NextNode

After creation of a stripline ”in one direction”, restart again
at first node to extend stripline in opposite direction



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 3 of 3

Connecting strips to graphs

The Gradient is very high on vessel forkings ⇒ strips are
disconnected
Use particle emission to create a connection at forkings

Particle is emitted with a displacement in the direction
described by the two corner nodes
This particle follows the gradient until the gradient value is
below a specific value
If there’s a node Nn within the range max dist: connect
corner node with node Nn



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Graph - Construction - Step 3 of 3

Connecting strips to graphs

The Gradient is very high on vessel forkings ⇒ strips are
disconnected
Use particle emission to create a connection at forkings

Particle is emitted with a displacement in the direction
described by the two corner nodes
This particle follows the gradient until the gradient value is
below a specific value
If there’s a node Nn within the range max dist: connect
corner node with node Nn



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Terminology

Matching graphs

Finding transformation matrix M

Projecting nodes P from matching graph (applying matrix
M for each point) results in points P’ in ”destination
space”

Minimize distance between nodes P’ and nearest edge of
destination graph



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Terminology

Matching graphs

Finding transformation matrix M

Projecting nodes P from matching graph (applying matrix
M for each point) results in points P’ in ”destination
space”

Minimize distance between nodes P’ and nearest edge of
destination graph



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching

Transformation Matrix M projecting point P to P’:

M · P =

0BB@
m1,1 m1,2 m1,3 m1,4
m2,1 m2,2 m2,3 m2,4
m3,1 m3,2 m3,3 m3,4
m4,1 m4,2 m4,3 m4,4

1CCA · P = P′

Transformation matrix M for 3D CT data can be computed with
4 nodes P i ,P j ,Pk ,P l of source graph and 4 points
O i ,O j ,Ok ,O l of destination graph (given in homogeneous form)0BBB@

P i
x P i

y P i
z 1

P j
x P j

y P j
z 1

Pk
x Pk

y Pk
z 1

P l
x P l

y P l
z 1

1CCCA
0BB@

m1,1
m1,2
m1,3
m1,4

1CCA =

0BBB@
O i

x
O j

x
Ok

x
O l

x

1CCCA
0BBB@

P i
x P i

y P i
z 1

P j
x P j

y P j
z 1

Pk
x Pk

y Pk
z 1

P l
x P l

y P l
z 1

1CCCA
0BB@

m2,1
m2,2
m2,3
m2,4

1CCA =

0BBB@
O i

y

O j
y

Ok
y

O l
y

1CCCA
0BBB@

P i
x P i

y P i
z 1

P j
x P j

y P j
z 1

Pk
x Pk

y Pk
z 1

P l
x P l

y P l
z 1

1CCCA
0BB@

m3,1
m3,2
m3,3
m3,4

1CCA =

0BBB@
O i

z
O j

z
Ok

z
O l

z

1CCCA



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Matrix decomposition

Creating a matrix based on all possible node combinations can
produce unlikely mappings

large shearings
large scalings / negative scalings
large rotations
large translations

Even an unlikely mapping can produce wrong matching with
best computed matching

Decompose matrix to basic transformations and restrict
transformations



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Matrix decomposition

Creating a matrix based on all possible node combinations can
produce unlikely mappings

large shearings
large scalings / negative scalings
large rotations
large translations

Even an unlikely mapping can produce wrong matching with
best computed matching

Decompose matrix to basic transformations and restrict
transformations



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Matrix decomposition

Creating a matrix based on all possible node combinations can
produce unlikely mappings

large shearings
large scalings / negative scalings
large rotations
large translations

Even an unlikely mapping can produce wrong matching with
best computed matching

Decompose matrix to basic transformations and restrict
transformations



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Matrix decomposition (cont’)

Matrix M is decomposed in

3 Translation components tx , ty , tz by matrix T
3 Rotation matrices Rn around axis n: Rx ,Ry ,Rz

3 Scaling components sx , sy , sz with matrix S
3 Shearing components sh1,2,3 in shearing matrix H

M = H · S · Rz · Rx · Ry · T
Decompositions ”simulate” different basic transformations

First the translation is done to align both datasets
Secondly the translated dataset is rotated around y axis for
better matching
...

Decomposition to basic transformations give the information
for an ”early drop” (omit the current matrix)



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Matrix decomposition (cont’)

Matrix M is decomposed in

3 Translation components tx , ty , tz by matrix T
3 Rotation matrices Rn around axis n: Rx ,Ry ,Rz

3 Scaling components sx , sy , sz with matrix S
3 Shearing components sh1,2,3 in shearing matrix H

M = H · S · Rz · Rx · Ry · T
Decompositions ”simulate” different basic transformations

First the translation is done to align both datasets
Secondly the translated dataset is rotated around y axis for
better matching
...

Decomposition to basic transformations give the information
for an ”early drop” (omit the current matrix)



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Translation

Translation Matrix T =


1 . . tx
. 1 . ty
. . 1 tz
. . . 1


Translation decomposition:

M = M′ · T =

0BB@
m1,1 m1,2 m1,3 0
m2,1 m2,2 m2,3 0
m3,1 m3,2 m3,3 0

0 0 0 1

1CCA ·
0BB@

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

1CCA

(Search values for T to eliminate the rightmost column)

Computation of the rightmost column values of M gives the
implicit solution for T0@m1,1 m1,2 m1,3

m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

1A ·
0@t1

t2
t3

1A =

0@m1,4
m2,4
m3,4

1A



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Translation

Translation Matrix T =


1 . . tx
. 1 . ty
. . 1 tz
. . . 1


Translation decomposition:

M = M′ · T =

0BB@
m1,1 m1,2 m1,3 0
m2,1 m2,2 m2,3 0
m3,1 m3,2 m3,3 0

0 0 0 1

1CCA ·
0BB@

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

1CCA

(Search values for T to eliminate the rightmost column)

Computation of the rightmost column values of M gives the
implicit solution for T0@m1,1 m1,2 m1,3

m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

1A ·
0@t1

t2
t3

1A =

0@m1,4
m2,4
m3,4

1A



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Translation

Translation Matrix T =


1 . . tx
. 1 . ty
. . 1 tz
. . . 1


Translation decomposition:

M = M′ · T =

0BB@
m1,1 m1,2 m1,3 0
m2,1 m2,2 m2,3 0
m3,1 m3,2 m3,3 0

0 0 0 1

1CCA ·
0BB@

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

1CCA

(Search values for T to eliminate the rightmost column)

Computation of the rightmost column values of M gives the
implicit solution for T0@m1,1 m1,2 m1,3

m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

1A ·
0@t1

t2
t3

1A =

0@m1,4
m2,4
m3,4

1A



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Rotation

Rotation matrices (example for given y axis):

Use rotation matrices (from QR decomposition) to set values
below diagonal to 0

Ry =


cos(α) 0 sin(α) 0

0 1 0 0
−sin(α) 0 cos(α) 0

0 0 0 1


Eliminating entry m

′′
3,1:

M′ = M′′ · Ry ⇐⇒ M′ · R−1
y = M′′

Assuming m
′′
3,1 should be set to 0:

0 = m
′
3,1cos(α)− m

′
3,3sin(α)⇐⇒ α = atan

0@ m
′
3,1

m
′
3,3

1A

Computation of Ry is done by using the inverted angle α



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Rotation

Rotation matrices (example for given y axis):

Use rotation matrices (from QR decomposition) to set values
below diagonal to 0

Ry =


cos(α) 0 sin(α) 0

0 1 0 0
−sin(α) 0 cos(α) 0

0 0 0 1


Eliminating entry m

′′
3,1:

M′ = M′′ · Ry ⇐⇒ M′ · R−1
y = M′′

Assuming m
′′
3,1 should be set to 0:

0 = m
′
3,1cos(α)− m

′
3,3sin(α)⇐⇒ α = atan

0@ m
′
3,1

m
′
3,3

1A

Computation of Ry is done by using the inverted angle α



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Scaling and Shearing

Result after translation and rotation elimination is an
upper diagonal matrix M(3)

Final decomposition returns the shearing and scaling matrix

M(3) = H · S ⇐⇒
0BBBB@

m
(3)
1,1 m

(3)
1,2 m

(3)
1,3 .

. m
(3)
2,2 m

(3)
2,3 .

. . m
(3)
3,3 .

. . . 1

1CCCCA =

0BB@
1 h1 h2 .
. 1 h3 .
. . 1 .
. . . 1

1CCA
0BB@

sx . . .
. sy . .
. . sz .
. . . 1

1CCA

sx = m
(3)
1,1 sy = m

(3)
2,2 sz = m

(3)
3,3

h1 · sy = m
(3)
1,2 ⇐⇒ h1 =

m
(3)
1,2
sy

h2 · sz = m
(3)
1,3 ⇐⇒ h2 =

m
(3)
1,3
sz

h3 · sz = m
(3)
2,3 ⇐⇒ h3 =

m
(3)
2,3
sz



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching

To work with minimal transformations of permitted matrices,
pretranslate the center of image to (0, 0, 0)

Empirical values to match 256x256x200 CT scans:

maximum relative rotation angle: 90◦

scale factor ∈ [0.7; 1.3]
shear factor ∈ [−0.3; 0.3]
maximum relative translation: 100

pretranslation matrix: P =

0BB@
1 . . −128
. 1 . −128
. . 1 −100
. . . 1

1CCA



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching

To work with minimal transformations of permitted matrices,
pretranslate the center of image to (0, 0, 0)

Empirical values to match 256x256x200 CT scans:

maximum relative rotation angle: 90◦

scale factor ∈ [0.7; 1.3]
shear factor ∈ [−0.3; 0.3]
maximum relative translation: 100

pretranslation matrix: P =

0BB@
1 . . −128
. 1 . −128
. . 1 −100
. . . 1

1CCA



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Computation of matching difference

If the matrix is valid, nodes P are projected to the
destination graph space giving P’
For every projected node P’, the nearest node P” of the
destination graph is searched
For both adjacent nodes of P” the smallest distance to the
edge is taken
Best matching matrix M: Projection with the smallest sum
of distances for all nodes P’ to the corresponding edges



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Computation of matching difference

If the matrix is valid, nodes P are projected to the
destination graph space giving P’
For every projected node P’, the nearest node P” of the
destination graph is searched
For both adjacent nodes of P” the smallest distance to the
edge is taken
Best matching matrix M: Projection with the smallest sum
of distances for all nodes P’ to the corresponding edges



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Matching - Computation of matching difference

If the matrix is valid, nodes P are projected to the
destination graph space giving P’
For every projected node P’, the nearest node P” of the
destination graph is searched
For both adjacent nodes of P” the smallest distance to the
edge is taken
Best matching matrix M: Projection with the smallest sum
of distances for all nodes P’ to the corresponding edges



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Efficient implementation

Direct implementation would take more than half an hour
to match a 256x256x200 CT dataset to reference data

Sphere filter:

Sphere filter has to be applied for every point!

Graph filter:

Storing a few particles with a full grid would be a waste of
memory
Computation time for nearest points with O(rd) increases with
resolution nd

Matching:

Using naive approach for a graph with N nodes there would be

O

((
N!

(N−4)!

)2
)

matching possibilities taking hours to

compute



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Efficient implementation

Direct implementation would take more than half an hour
to match a 256x256x200 CT dataset to reference data

Sphere filter:

Sphere filter has to be applied for every point!

Graph filter:

Storing a few particles with a full grid would be a waste of
memory
Computation time for nearest points with O(rd) increases with
resolution nd

Matching:

Using naive approach for a graph with N nodes there would be

O

((
N!

(N−4)!

)2
)

matching possibilities taking hours to

compute



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Efficient implementation

Direct implementation would take more than half an hour
to match a 256x256x200 CT dataset to reference data

Sphere filter:

Sphere filter has to be applied for every point!

Graph filter:

Storing a few particles with a full grid would be a waste of
memory
Computation time for nearest points with O(rd) increases with
resolution nd

Matching:

Using naive approach for a graph with N nodes there would be

O

((
N!

(N−4)!

)2
)

matching possibilities taking hours to

compute



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Efficient implementation

Direct implementation would take more than half an hour
to match a 256x256x200 CT dataset to reference data

Sphere filter:

Sphere filter has to be applied for every point!

Graph filter:

Storing a few particles with a full grid would be a waste of
memory
Computation time for nearest points with O(rd) increases with
resolution nd

Matching:

Using naive approach for a graph with N nodes there would be

O

((
N!

(N−4)!

)2
)

matching possibilities taking hours to

compute



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Efficient implementation

Direct implementation would take more than half an hour
to match a 256x256x200 CT dataset to reference data

Sphere filter:

Sphere filter has to be applied for every point!

Graph filter:

Storing a few particles with a full grid would be a waste of
memory
Computation time for nearest points with O(rd) increases with
resolution nd

Matching:

Using naive approach for a graph with N nodes there would be

O

((
N!

(N−4)!

)2
)

matching possibilities taking hours to

compute



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Sphere filter using FFT

Applying sphere filter is a convolution for each sphere size

Convolution can be done very efficiently in frequency space,
specially for large kernels



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Sphere filter using FFT

FFT based on periodical data

Boundary conditions: Data fields have to be padded with
extra data to work with existing FFT libraries (e.g. FFTW)

Applying the standard FFT is based on a periodical
function

Multiplying the kernel in frequency room would take values
for spheres from opposite side

Large spheres at borders don’t represent the local data



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Sphere filter using FFT

FFT based on periodical data

Boundary conditions: Data fields have to be padded with
extra data to work with existing FFT libraries (e.g. FFTW)

Applying the standard FFT is based on a periodical
function

Multiplying the kernel in frequency room would take values
for spheres from opposite side

Large spheres at borders don’t represent the local data



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Sphere filter using FFT

FFT based on periodical data

Boundary conditions: Data fields have to be padded with
extra data to work with existing FFT libraries (e.g. FFTW)

Applying the standard FFT is based on a periodical
function

Multiplying the kernel in frequency room would take values
for spheres from opposite side

Large spheres at borders don’t represent the local data



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Sphere filter using FFT

FFT based on symmetric data

Left: Symmetric data - Right: Kernel

Using real data FFT assuming domain is symmetric on
borders

Introduced errors just depend on the local data

Kernel has to be initialized for only 1
8 of the data domain

Reduces the computation from > 20 minutes to a few seconds



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Sphere filter using FFT

FFT based on symmetric data

Left: Symmetric data - Right: Kernel

Using real data FFT assuming domain is symmetric on
borders

Introduced errors just depend on the local data

Kernel has to be initialized for only 1
8 of the data domain

Reduces the computation from > 20 minutes to a few seconds



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Sphere filter using FFT

FFT based on symmetric data

Left: Symmetric data - Right: Kernel

Using real data FFT assuming domain is symmetric on
borders

Introduced errors just depend on the local data

Kernel has to be initialized for only 1
8 of the data domain

Reduces the computation from > 20 minutes to a few seconds



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Handling Particles with KD-Trees

KD-Tree

http://en.wikipedia.org/wiki/Image:3dtree.png

KD Trees store arbitrary points using a tree like structure

Efficient operations to find points within a given radius

⇒ Graph can be constructed within a second



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Handling Particles with KD-Trees

KD-Tree

http://en.wikipedia.org/wiki/Image:3dtree.png

KD Trees store arbitrary points using a tree like structure

Efficient operations to find points within a given radius

⇒ Graph can be constructed within a second



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Restricting Transformation Matrices

O

((
N!

(N−4)!

)2
)

matching possibilities

Discretization of points introduce error ε1

Small anatomical differences of points introduce errors ε2

Error in matrix after construction becomes less for far distant
points
Use only nodes with a distance of at least δ to create a
better conditioned problem

⇒ avoids the computation of the transformation matrix for
many points

Omitting impossible node combinations and nodes
producing a bad conditioned problem decreases
computation time to a few seconds



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Restricting Transformation Matrices

O

((
N!

(N−4)!

)2
)

matching possibilities

Discretization of points introduce error ε1

Small anatomical differences of points introduce errors ε2

Error in matrix after construction becomes less for far distant
points
Use only nodes with a distance of at least δ to create a
better conditioned problem

⇒ avoids the computation of the transformation matrix for
many points

Omitting impossible node combinations and nodes
producing a bad conditioned problem decreases
computation time to a few seconds



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Restricting Transformation Matrices

O

((
N!

(N−4)!

)2
)

matching possibilities

Discretization of points introduce error ε1

Small anatomical differences of points introduce errors ε2

Error in matrix after construction becomes less for far distant
points
Use only nodes with a distance of at least δ to create a
better conditioned problem

⇒ avoids the computation of the transformation matrix for
many points

Omitting impossible node combinations and nodes
producing a bad conditioned problem decreases
computation time to a few seconds



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Results

Matching 2D CT slices using only midpoints of edges as graph matching

nodes

3D CT heart blood segmentation and registration:

Can be handled in an efficient and fast way

Takes just a few seconds on recent quad-core-systems

Using translation matrices offers registration of invisible
areas (yellow line in right image)



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Possible improvements

Use sparser representation of graph using extrapolation or
spline curves

Using interpolation with spherical filter (aliased kernel) for
more accurate sphere radii

Graph construction: include possible omitted nodes at strip
endings

Randomized/hierarchical matching points selection
(maybe using hints of graph)

Matching graphs

Using heuristics from graphs for matching
Comparing edge slopes

Use matching positive abort if computed overall distance
is below a certain value (assuming this is the correct
matching)



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Thank you for your
attention

Any questions?



Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

References and Links

CT Datasets: Nuklearmed. Klinik der TU Muenchen,
Germany

FFTW: http://www.fftw.org/

KD-Tree: http://libkdtree.alioth.debian.org/

DICOM-Toolkit: http://dicom.offis.de/dcmtk.php.de


	Outline
	Introduction
	Motivation
	Simulation

	Filters
	Overview

	Sphere
	Gradient
	Particles
	Graph
	Matching
	Efficient implementation
	Sphere filter with FFT
	Restricting Transformation Matrices

	Results
	Possible improvements

	References

