Outline	Introduction	Filters	Sphere	Gradient	Particles	Graph	Matching	Efficient implementation	Results	References

3D Spherical based Segmentation and Registration

Martin Schreiber martin.schreiber@in.tum.de

December 2, 2008

- Introduction
 - Motivation
 - Simulation
- 2 Filters
 - Overview
- 3 Sphere
- 4 Gradient
- 5 Particles
- 6 Graph
- Matching
- 8 Efficient implementation
 - Sphere filter with FFT
 - Restricting Transformation Matrices
- 9 Results
 - Possible improvements
 - References

æ

(日)、

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices...
 - - matching a large amount of points created by edge detection
 - - computing the difference of every data domain voxel
 - - ...
- → Use (blood) vessels as (more) characteristic data with less
 data for representation

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices...
 - - matching a large amount of points created by edge detection
 - - computing the difference of every data domain voxel
 - - ...
- → Use (blood) vessels as (more) characteristic data with less
 data for representation

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices...
 - - matching a large amount of points created by edge detection
 - - computing the difference of every data domain voxel
 - - ...

→ Use (blood) vessels as (more) characteristic data with less
 data for representation

Selected CT slices from different patients showing similar areas (Source: Nuklearmed. Klinik der TU Muenchen)

- Comparing different CT datasets taken at different time
- Matching of 3D datasets performed by hand takes a lot of time
- Existing algorithms work on projective matrices...
 - - matching a large amount of points created by edge detection
 - - computing the difference of every data domain voxel
 - - ...
- → Use (blood) vessels as (more) characteristic data with less data for representation

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

- **Simulate the movement** of spheres through vessels touching the borders like a chimney-sweeper
- **Sphere radii are variable** and grow/shrink to touch the vessel borders
- Spheres stay in the center of the vessels
- The radius of the sphere representing the blood vessels is stored at each center point
- Direct implementation would be too inefficient due to collision tests, realignment of sphere, etc.

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

- **Simulate the movement** of spheres through vessels touching the borders like a chimney-sweeper
- Sphere radii are variable and grow/shrink to touch the vessel borders
- Spheres stay in the center of the vessels
- The radius of **the sphere representing the blood vessels** is stored at each **center point**
- Direct implementation would be too inefficient due to collision tests, realignment of sphere, etc.

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

- **Simulate the movement** of spheres through vessels touching the borders like a chimney-sweeper
- Sphere radii are variable and grow/shrink to touch the vessel borders
- Spheres stay in the center of the vessels
- The radius of **the sphere representing the blood vessels** is stored at each **center point**
- Direct implementation would be too inefficient due to collision tests, realignment of sphere, etc.

• Raw CT data

• Growing Spheres

• Computation of Gradient

Particle emission ...

Simulation of Sphere movement by different Filters

• Raw CT data

• Computation of Gradient

• Particle emission

Simulation of Sphere movement by different Filters

• Raw CT data

• Growing Spheres

• Computation of Gradient

Particle emission ...

Simulation of Sphere movement by different Filters

• Raw CT data

• Growing Spheres

• Computation of Gradient

• ...

э

(日)、

Spheres - Window

• Values for coronary contrast media are usually within a specific window

Spheres - Threshold flag field

- Thresholding CT data by the window range [win_{min}; win_{max}]
 - Flag field speeds up computations
 - Important for convolution in frequency room (later)
 - Typical values for coronary contrast media: [150; 1000]

$$FlagData_{pos} = \begin{cases} 1 & win_{min} < value_{pos} < win_{max} \\ 0 & else \end{cases}$$

(日)、

Spheres - First spherical test

• Avoiding early stop of spherical growing on noisy data:

- Start with a radius StartRadius
- Abort if there are **too many mismatching flags** within the sphere
- Output value *SphereData_{pos}* of current voxel is set to **0** if first spherical test was not successful

Start sphere abort criteria

FlagDatapos *pos*∈*StartSphere* < MaxMismatch Voxels in Sphere

Spheres - Growing spheres, radius 3

• If there was no output data set continue growing the sphere

- Growing is stopped if too many mismatching voxels on the sphere surface exceed a specific error value
- Output value *SphereData_{pos}* is set to the **current sphere** radius if the abort criteria is met

Spheres - Growing spheres, radius 4

- Sphere growing for every voxel returns data set with the following **properties**:
 - The sphere radii **represent the blood vessels** with a diameter of at least 2 · *StartRadius*
 - Blood vessels could be **reconstructed** with the spherical dataset by **joining the sphere volumes**
 - Spheres totally covered by larger spheres can be dropped if we are only interested in a representative data for blood vessels

Gradient - Computation

・ロト ・四ト ・ヨト ・ヨト ・ヨー ・

Gradient - Meaning

Gradient vectors scaled by 2

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0	0,1	-1,0	-3,0	-2,-2	0,0	0,0	0,0	0,0		\wedge	<	<	L				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0	1,3	0,1	-1,-1	-2,-3	-2,-2	0,0	0,0	0,0		1	\wedge	L	\checkmark	L			
0.0 0.2 2.3 1.0 1-1-1-2-2-2-2-2 0.0 0.0 0.0 2.0 2.2 1.1 0.0 1.0 0-2 0.0 0.0 0.0 0.0 2.2 2.1 1.0 0-10 0-2 0.0 0.0 0.0 0.0 2.2 2.2 0.3 0.0 0.0 0.0 0.0 0.0 0.2 2.2 2.1 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0,0	2,2	3,3	1,0	-1,-1	-3,-2	-2,-2	0,0	0,0		7	7	>	L	$\scriptstyle u$	L		
0.0 0.0 2.0 2.1 1.0 02 0.0 0.0 0.0 2.2 2.2 0.3 0.0 0.0 0.0 0.0 0.0 2.2 2.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0,0	0,0	2,2	3,1	0,1	-1,-1	-2,-2	-2,-2	0,0			7	7	\wedge	L	L	L	
0.0 0.0 2.2 2.2 0.3 0.0 0	0,0	0,0	2,0	2,2	1,1	0,0	-1,0	0,-2	0,0				7	7	$\times\!$	$^{\prime}$	<	
0.0 0.0 0.0 2.2 2.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0,0	0,0	0,0	2,2	2,2	0,3	0,0	0,0	0,0				7	7	\wedge	$\times\!$	\scriptstyle	
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	0,0	0,0	0,0	0,0	0,2	2,2	2,2	1,2	0,0					\wedge	7	7	1	
	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0									

- Gradients aim to the local center of largest sphere in neighborhood
 - \Rightarrow Can be used for efficient simulation of origin problem
 - Growing the sphere forces movement to the center of vessel
 - Movement direction is given by gradient
- Gradient can be **smoothed** if sphere data has a high frequency

Particles - Emission and movement

Particle emission and movement along the gradient

- Emit particles starting on voxels with sphere > MinEmissionRadius
- MinEmissionRadius avoids emitting particles in small vessels (for registration unnecessary) and positive-false segmented areas like bones
- Particles follow the local gradient vector
- Length of gradient vector is small at the center of vessels
- Particle stops if the length of gradient vector is below a specific value

э

Particles - Emission and movement

Particle emission and movement along the gradient

- Emit particles starting on voxels with sphere > MinEmissionRadius
- MinEmissionRadius avoids emitting particles in small vessels (for registration unnecessary) and positive-false segmented areas like bones
- Particles follow the local gradient vector
- Length of gradient vector is small at the center of vessels
- Particle stops if the length of gradient vector is below a specific value

э

Graph - Construction

Graph reconstruction

- Representing blood vessels by graphs
- Radius is also stored for each node for advanced registration
- Reduces matching of the large particle amount to matching of sparse graph nodes

э

(日)、

- Each particle has a **flag** *used* which is set if the particle is already **represented by an edge**
- Search for neighbored particle within a specific range [min_dist, max_dist] where the used flag is not yet set
- Take particle which is furthest away as node NextNode
- Set used flag for all particles within the range max_dist
- Continue at the node NextNode

- 日本 - 4 画 - 4 画 - 4 画 - 4

- Each particle has a **flag** *used* which is set if the particle is already **represented by an edge**
- Search for **neighbored particle within a specific range** [*min_dist*, *max_dist*] where the used flag is not yet set
- Take particle which is furthest away as node NextNode
- Set used flag for all particles within the range max_dist
- Continue at the node *NextNode*

- 日本 - 4 画 - 4 画 - 4 画 - 4

- Each particle has a **flag** *used* which is set if the particle is already **represented by an edge**
- Search for **neighbored particle within a specific range** [*min_dist*, *max_dist*] where the used flag is not yet set
- Take particle which is **furthest away** as node NextNode
- Set used flag for all particles within the range max_dist
 Continue at the node NextNode

- Each particle has a **flag** *used* which is set if the particle is already **represented by an edge**
- Search for **neighbored particle within a specific range** [*min_dist*, *max_dist*] where the used flag is not yet set
- Take particle which is furthest away as node NextNode
- Set used flag for all particles within the range max_dist
- Continue at the node *NextNode*

・ロッ ・雪 ・ ・ ヨ ・

- Start each edge construction at unused particle with maximum radius ⇒ First node can have 2 neighbors
- Setting all used flags of first node within the range *max_dist* avoids creating edges in the opposite direction
- → Set used flags only for particles which are also in the range max_dist of NextNode
- After creation of a stripline "in one direction", restart again at first node to extend stripline in opposite direction

- Start each edge construction at unused particle with maximum radius ⇒ First node can have 2 neighbors
- Setting all used flags of first node within the range *max_dist* avoids creating edges in the opposite direction
- → Set used flags only for particles which are also in the range max_dist of NextNode
- After creation of a stripline "in one direction", restart again at first node to extend stripline in opposite direction

- Start each edge construction at unused particle with maximum radius ⇒ First node can have 2 neighbors
- Setting all used flags of first node within the range *max_dist* avoids creating edges in the opposite direction
- ⇒ Set used flags only for particles which are also in the range max_dist of NextNode
- After creation of a stripline "in one direction", restart again at first node to extend stripline in opposite direction

- Start each edge construction at unused particle with maximum radius ⇒ First node can have 2 neighbors
- Setting all used flags of first node within the range *max_dist* avoids creating edges in the opposite direction
- ⇒ Set used flags only for particles which are also in the range max_dist of NextNode
- After creation of a stripline "in one direction", restart again at first node to extend stripline in opposite direction

- The Gradient is very high on vessel $\mathbf{forkings} \Rightarrow \mathsf{strips}$ are $\mathbf{disconnected}$
- Use particle emission to create a connection at forkings
 - Particle is emitted with a **displacement** in the direction described by the **two corner nodes**
 - This particle follows the gradient until the gradient value is below a specific value
 - If there's a node N_n within the range max_dist: connect
 corner node with node N_n

э

- The Gradient is very high on vessel ${\rm forkings} \Rightarrow {\rm strips}$ are ${\rm disconnected}$
- Use particle emission to create a connection at forkings
 - Particle is emitted with a **displacement** in the direction described by the **two corner nodes**
 - This particle follows the gradient until the gradient value is below a specific value
 - If there's a node N_n within the range max_dist: connect corner node with node N_n

Matching - Terminology

Matching graphs

• Finding transformation matrix M

- Projecting nodes P from matching graph (applying matrix M for each point) results in points P' in "destination space"
- Minimize distance between nodes P' and nearest edge of destination graph

Matching - Terminology

Matching graphs

- Finding transformation matrix M
- Projecting nodes P from matching graph (applying matrix *M* for each point) results in points P' in "destination space"
- Minimize distance between nodes P' and nearest edge of destination graph

Transformation Matrix M projecting point P to P':

$$M \cdot P = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\ m_{4,1} & m_{4,2} & m_{4,3} & m_{4,4} \end{pmatrix} \cdot P = P'$$

Transformation matrix M for 3D CT data can be computed with **4 nodes** P^i, P^j, P^k, P^l of source graph and **4 points** O^i, O^j, O^k, O^l of destination graph (given in homogeneous form)

$$\begin{pmatrix} P_{x}^{j} & P_{y}^{j} & P_{z}^{j} & 1 \\ P$$

Matching - Matrix decomposition

- Creating a matrix based on all possible node combinations can produce **unlikely mappings**
 - large shearings
 - large scalings / negative scalings
 - large rotations
 - large translations
- Even an unlikely mapping can produce wrong matching with best computed matching
- Decompose matrix to basic transformations and restrict transformations

- · Creating a matrix bacad on all passible pade combinat
 - Creating a matrix based on all possible node combinations can produce **unlikely mappings**
 - large shearings
 - large scalings / negative scalings
 - large rotations
 - large translations
 - Even an unlikely mapping can produce wrong matching with best computed matching
 - Decompose matrix to basic transformations and restrict transformations

- Creating a matrix based on all possible node combinations can produce unlikely mappings
 - large shearings
 - large scalings / negative scalings
 - large rotations
 - large translations
 - Even an unlikely mapping can produce wrong matching with best computed matching
 - Decompose matrix to basic transformations and restrict transformations

Matching - Matrix decomposition (cont')

- Matrix M is decomposed in
 - 3 Translation components t_x, t_y, t_z by matrix T
 - 3 Rotation matrices R_n around axis n: R_x , R_y , R_z
 - 3 Scaling components s_x, s_y, s_z with matrix S
 - 3 Shearing components $sh_{1,2,3}$ in shearing matrix H
- $M = H \cdot S \cdot R_z \cdot R_x \cdot R_y \cdot T$
- Decompositions "simulate" different basic transformations
 - First the translation is done to align both datasets
 - Secondly the translated dataset is rotated around y axis for better matching
 - ...
- Decomposition to basic transformations give the information for an "early drop" (omit the current matrix)

Matching - Matrix decomposition (cont')

- Matrix M is decomposed in
 - 3 Translation components t_x, t_y, t_z by matrix T
 - 3 Rotation matrices R_n around axis n: R_x , R_y , R_z
 - 3 Scaling components s_x, s_y, s_z with matrix S
 - 3 Shearing components $sh_{1,2,3}$ in shearing matrix H
- $M = H \cdot S \cdot R_z \cdot R_x \cdot R_y \cdot T$
- Decompositions "simulate" different basic transformations
 - First the translation is done to align both datasets
 - Secondly the translated dataset is rotated around y axis for better matching
 - ...
- Decomposition to basic transformations give the information for an "early drop" (omit the current matrix)

• Translation Matrix
$$T = \begin{pmatrix} 1 & . & . & t_x \\ . & 1 & . & t_y \\ . & . & 1 & t_z \\ . & . & . & 1 \end{pmatrix}$$

• Translation decomposition:

$$M = M' \cdot T = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & 0 \\ m_{2,1} & m_{2,2} & m_{2,3} & 0 \\ m_{3,1} & m_{3,2} & m_{3,3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(Search values for T to eliminate the rightmost column)

• Computation of the rightmost column values of M gives the implicit solution for T

$$\begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{pmatrix} \cdot \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} = \begin{pmatrix} m_{1,4} \\ m_{2,4} \\ m_{3,4} \end{pmatrix}$$

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• Translation Matrix
$$T = \begin{pmatrix} 1 & \cdot & \cdot & t_x \\ \cdot & 1 & \cdot & t_y \\ \cdot & \cdot & 1 & t_z \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

• Translation decomposition:

$$M = M' \cdot T = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & 0 \\ m_{2,1} & m_{2,2} & m_{2,3} & 0 \\ m_{3,1} & m_{3,2} & m_{3,3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(Search values for T to eliminate the rightmost column)

 Computation of the rightmost column values of M gives the implicit solution for T

$$\begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{pmatrix} \cdot \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} = \begin{pmatrix} m_{1,4} \\ m_{2,4} \\ m_{3,4} \end{pmatrix}$$

э

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

• Translation Matrix
$$T = \begin{pmatrix} 1 & \cdot & \cdot & t_x \\ \cdot & 1 & \cdot & t_y \\ \cdot & \cdot & 1 & t_z \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

• Translation decomposition:

$$M = M' \cdot T = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & 0 \\ m_{2,1} & m_{2,2} & m_{2,3} & 0 \\ m_{3,1} & m_{3,2} & m_{3,3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(Search values for T to eliminate the rightmost column)

 $\bullet\,$ Computation of the rightmost column values of M gives the implicit solution for T

$$\begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{pmatrix} \cdot \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} = \begin{pmatrix} m_{1,4} \\ m_{2,4} \\ m_{3,4} \end{pmatrix}$$

< ロ > < 個 > < 画 > < 画 >

э

Matching - Rotation

Rotation matrices (example for given y axis):

 $\bullet\,$ Use rotation matrices (from QR decomposition) to set values below diagonal to 0

$$\mathsf{R}_{y} = \begin{pmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Eliminating entry $m''_{3,1}$:

$$M' = M'' \cdot R_y \iff M' \cdot R_y^{-1} = M''$$

Assuming $m''_{3,1}$ should be set to 0:

$$0 = m'_{3,1} \cos(\alpha) - m'_{3,3} \sin(\alpha) \iff \alpha = \operatorname{atan} \left(\frac{m'_{3,1}}{m'_{3,3}} \right)$$

Computation of R_y is done by using the inverted angle α

Matching - Rotation

Rotation matrices (example for given y axis):

• Use rotation matrices (from QR decomposition) to set values below diagonal to 0

$$R_{y} = \begin{pmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0\\ 0 & 1 & 0 & 0\\ -\sin(\alpha) & 0 & \cos(\alpha) & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Eliminating entry $m''_{3,1}$:

$$M' = M'' \cdot R_y \iff M' \cdot R_y^{-1} = M''$$

Assuming $m_{3,1}''$ should be set to 0:

$$0 = m'_{3,1} cos(\alpha) - m'_{3,3} sin(\alpha) \iff \alpha = atan \left(\frac{m'_{3,1}}{m'_{3,3}}\right)$$

Computation of R_y is done by using the inverted angle α

Matching - Scaling and Shearing

 $\langle \alpha \rangle$

- Result after translation and rotation elimination is an upper diagonal matrix $M^{(3)}$
- Final decomposition returns the shearing and scaling matrix

$$M^{(3)} = H \cdot S \iff$$

$$\begin{pmatrix} m_{1,1}^{(3)} & m_{1,2}^{(3)} & m_{1,3}^{(3)} & \ddots \\ \cdot & m_{2,2}^{(3)} & m_{2,3}^{(3)} & \cdot \\ \cdot & \cdot & m_{3,3}^{(3)} & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \end{pmatrix} = \begin{pmatrix} 1 & h_1 & h_2 & \cdot \\ \cdot & 1 & h_3 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix} \begin{pmatrix} s_x & \cdot & \cdot & \cdot \\ \cdot & s_y & \cdot & \cdot \\ \cdot & \cdot & s_z & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

$$s_x = m_{1,1}^{(3)} \quad s_y = m_{2,2}^{(3)} \quad s_z = m_{3,3}^{(3)}$$

$$h_1 \cdot s_y = m_{1,2}^{(3)} \iff h_1 = \frac{m_{1,3}^{(3)}}{s_z}$$

$$h_2 \cdot s_z = m_{1,3}^{(3)} \iff h_2 = \frac{m_{1,3}^{(3)}}{s_z}$$

$$h_3 \cdot s_z = m_{2,3}^{(3)} \iff h_3 = \frac{m_{2,3}^{(3)}}{s_z}$$

• To work with minimal transformations of permitted matrices, **pretranslate the center of image** to (0,0,0)

• Empirical values to match 256x256x200 CT scans:

- maximum relative rotation angle: 90°
- scale factor $\in [0.7; 1.3]$
- shear factor $\in [-0.3; 0.3]$
- maximum relative translation: 100

• pretranslation matrix:
$$P = \begin{pmatrix} 1 & 1 & 1 & -128 \\ \cdot & 1 & -128 \\ \cdot & \cdot & 1 & -100 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

• To work with minimal transformations of permitted matrices, **pretranslate the center of image** to (0,0,0)

100)

(日) (四) (王) (日) (日) (日)

• Empirical values to match 256x256x200 CT scans:

- maximum relative rotation angle: 90°
- scale factor $\in [0.7; 1.3]$
- shear factor $\in [-0.3; 0.3]$
- maximum relative translation: 100

• pretranslation matrix:
$$P = \begin{pmatrix} 1 & . & . & -120 \\ . & 1 & . & -128 \\ . & . & 1 & -100 \\ . & . & . & 1 \end{pmatrix}$$

Matching - Computation of matching difference

- If the matrix is valid, nodes P are projected to the destination graph space giving P'
- For every projected node P', the nearest node P" of the destination graph is searched
- For both adjacent nodes of P" the **smallest distance to the** edge is taken
- Best matching matrix M: Projection with the smallest sum of distances for all nodes P' to the corresponding edges.

Matching - Computation of matching difference

- If the matrix is valid, nodes P are projected to the destination graph space giving P'
- For every projected node P', the nearest node P" of the destination graph is searched
- For both adjacent nodes of P" the **smallest distance to the** edge is taken
- Best matching matrix M: Projection with the smallest sum of distances for all nodes P' to the corresponding edges;

Matching - Computation of matching difference

- If the matrix is valid, nodes P are projected to the destination graph space giving P'
- For every projected node P', the nearest node P" of the destination graph is searched
- For both adjacent nodes of P" the **smallest distance to the** edge is taken
- Best matching matrix M: Projection with the smallest sum of distances for all nodes P' to the corresponding edges.

- Direct implementation would take **more than half an hour** to match a 256x256x200 CT dataset to reference data
- Sphere filter:
 - Sphere filter has to be applied for every point!
- Graph filter:
 - Storing a few particles with a full grid would be a **waste of memory**
 - Computation time for nearest points with $O(r^d)$ increases with resolution n^d
- Matching:
 - Using naive approach for a graph with N nodes there would be $O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$ matching possibilities taking hours to compute

- Direct implementation would take **more than half an hour** to match a 256x256x200 CT dataset to reference data
- Sphere filter:
 - Sphere filter has to be applied for every point!
- Graph filter:
 - Storing a few particles with a full grid would be a **waste of memory**
 - Computation time for nearest points with $O(r^d)$ increases with resolution n^d
- Matching:
 - Using naive approach for a graph with N nodes there would be $O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$ matching possibilities taking hours to compute

- Direct implementation would take **more than half an hour** to match a 256x256x200 CT dataset to reference data
- Sphere filter:
 - Sphere filter has to be applied for every point!
- Graph filter:
 - Storing a few particles with a full grid would be a **waste of memory**
 - Computation time for nearest points with $O(r^d)$ increases with resolution n^d
- Matching:
 - Using naive approach for a graph with N nodes there would be $O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$ matching possibilities taking hours to compute

- Direct implementation would take **more than half an hour** to match a 256x256x200 CT dataset to reference data
- Sphere filter:
 - Sphere filter has to be applied for every point!
- Graph filter:
 - Storing a few particles with a full grid would be a **waste of memory**
 - Computation time for nearest points with $O(r^d)$ increases with resolution n^d
- Matching:
 - Using naive approach for a graph with N nodes there would be $O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$ matching possibilities taking hours to compute

- Direct implementation would take **more than half an hour** to match a 256x256x200 CT dataset to reference data
- Sphere filter:
 - Sphere filter has to be applied for every point!
- Graph filter:
 - Storing a few particles with a full grid would be a **waste of memory**
 - Computation time for nearest points with $O(r^d)$ increases with resolution n^d
- Matching:
 - Using naive approach for a graph with N nodes there would be $O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$ matching possibilities taking hours to compute

- Applying sphere filter is a convolution for each sphere size
- Convolution can be done very efficiently in **frequency space**, specially for large kernels

FFT based on periodical data

- Boundary conditions: Data fields have to be padded with extra data to work with existing FFT libraries (e.g. FFTW)
- Applying the **standard FFT** is based on a **periodical function**
- Multiplying the kernel in frequency room would take values for spheres from opposite side
- Large spheres at borders don't represent the local data

FFT based on periodical data

- Boundary conditions: Data fields have to be padded with extra data to work with existing FFT libraries (e.g. FFTW)
- Applying the **standard FFT** is based on a **periodical function**
- Multiplying the kernel in frequency room would take values for spheres from opposite side
- Large spheres at borders don't represent the local data

FFT based on periodical data

- Boundary conditions: Data fields have to be padded with extra data to work with existing FFT libraries (e.g. FFTW)
- Applying the **standard FFT** is based on a **periodical function**
- Multiplying the kernel in frequency room would take values for spheres from opposite side
- Large spheres at borders don't represent the local data

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

- Using real data FFT assuming domain is symmetric on borders
- Introduced errors just depend on the local data
- Kernel has to be initialized for only $\frac{1}{8}$ of the data domain
- Reduces the computation from > 20 minutes to a few seconds

- 日本 - 4 日本 - 4 日本 - 日本

- Using real data FFT assuming domain is symmetric on borders
- Introduced errors just depend on the local data
- Kernel has to be initialized for only $\frac{1}{8}$ of the data domain
- Reduces the computation from > 20 minutes to a few seconds

- Using real data FFT assuming domain is symmetric on borders
- Introduced errors just depend on the local data
- Kernel has to be initialized for only $\frac{1}{8}$ of the data domain
- Reduces the computation from > 20 minutes to a few seconds

Outline Introduction Filters Sphere Gradient Particles Graph Matching Efficient implementation Results References

Handling Particles with KD-Trees

KD-Tree

- KD Trees store arbitrary points using a tree like structure
- Efficient operations to find points within a given radius
- \Rightarrow Graph can be constructed within a second

э

Handling Particles with KD-Trees

KD-Tree

- KD Trees store arbitrary points using a tree like structure
- Efficient operations to find points within a given radius
- \Rightarrow Graph can be constructed within a second

э

Restricting Transformation Matrices

•
$$O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$$
 matching possibilities

- **Discretization** of points introduce error ϵ_1
- Small anatomical differences of points introduce errors ϵ_2
 - Error in matrix after construction becomes less for far distant points
 - Use only nodes with a distance of at least δ to create a better conditioned problem
- \Rightarrow avoids the computation of the transformation matrix for many points
- Omitting **impossible node combinations** and **nodes producing a bad conditioned problem** decreases computation time to a few seconds

Restricting Transformation Matrices

•
$$O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$$
 matching possibilities

- Discretization of points introduce error ϵ_1
- Small anatomical differences of points introduce errors ϵ_2
 - Error in matrix after construction becomes less for far distant points
 - Use only nodes with a distance of at least δ to create a better conditioned problem
- ⇒ avoids the computation of the transformation matrix for many points
- Omitting **impossible node combinations** and **nodes producing a bad conditioned problem** decreases computation time to a few seconds

Restricting Transformation Matrices

•
$$O\left(\left(\frac{N!}{(N-4)!}\right)^2\right)$$
 matching possibilities

- Discretization of points introduce error ϵ_1
- Small anatomical differences of points introduce errors ϵ_2
 - Error in matrix after construction becomes less for far distant points
 - Use only nodes with a distance of at least δ to create a better conditioned problem
- ⇒ avoids the computation of the transformation matrix for many points
- Omitting **impossible node combinations** and **nodes producing a bad conditioned problem** decreases computation time to a few seconds

Results

Matching 2D CT slices using only midpoints of edges as graph matching nodes

3D CT heart blood segmentation and registration:

- Can be handled in an efficient and fast way
- Takes just a few seconds on recent quad-core-systems
- Using translation matrices offers **registration of invisible areas** (yellow line in right image)

Possible improvements

- Use sparser representation of graph using extrapolation or spline curves
- Using **interpolation** with spherical filter (aliased kernel) for more accurate sphere radii
- Graph construction: include possible omitted nodes at strip endings
- Randomized/hierarchical matching points selection (maybe using hints of graph)
- Matching graphs
 - Using heuristics from graphs for matching
 - Comparing edge slopes
- Use matching positive abort if computed overall distance is below a certain value (assuming this is the correct matching)

(日) (四) (王) (日) (日) (日)

- CT Datasets: Nuklearmed. Klinik der TU Muenchen, Germany
- FFTW: http://www.fftw.org/
- KD-Tree: http://libkdtree.alioth.debian.org/
- DICOM-Toolkit: http://dicom.offis.de/dcmtk.php.de

