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Introduction
°

Comparing CT datasets

Selected CT slices from different patients showing similar areas
(Source: Nuklearmed. Klinik der TU Muenchen)

@ Comparing different CT datasets taken at different time
@ Matching of 3D datasets performed by hand takes a lot of
time
@ Existing algorithms work on projective matrices...
e - matching a large amount of points created by edge detection
e - computing the difference of every data domain voxel
o - ...
@ = Use (blood) vessels as (more) characteristic data with less
data for representation

ormd]
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Introduction
°

Simulation of spheres moving through vessels

Simulated movement of sphere within the blood vessel

v

e Simulate the movement of spheres through vessels touching
the borders like a chimney-sweeper

e Sphere radii are variable and grow/shrink to touch the
vessel borders

@ Spheres stay in the center of the vessels

@ The radius of the sphere representing the blood vessels is
stored at each center point

@ Direct implementation would be too inefficient due to collision ..
tests, realignment of sphere, etc. "
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Filters
°

Simulation of Sphere movement by different Filters

e Raw CT data

e Growing Spheres

e Computation of Gradient

e Particle emission
o ...

ol



Sphere

Spheres - Window

@ Values for coronary contrast media are usually within a
specific window



Sphere

Spheres - Threshold flag field
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@ Thresholding CT data by the window range [winmjn; Winmax|

o Flag field speeds up computations
e Important for convolution in frequency room (later)
o Typical values for coronary contrast media: [150; 1000]

1 wingin < valuepos < Winmax

FlagData,os =
& pos {0 else



Sphere

Spheres - First spherical test

@ Avoiding early stop of spherical growing on noisy data:
e Start with a radius StartRadius
e Abort if there are too many mismatching flags within the
sphere
o Output value SphereDatap,s of current voxel is set to 0 if first
spherical test was not successful

Start sphere abort criteria
> FlagDatapos

os€ StartSphere c
g i < MaxMismatch i‘
|Voxels in Sphere| :
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Spheres - Growing spheres, radius 3
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o If there was no output data set continue growing the sphere
o Growing is stopped if too many mismatching voxels on the
sphere surface exceed a specific error value
o Output value SphereDatap,s is set to the current sphere
radius if the abort criteria is met

Sphere growing abort criteria

> FlagDatapos
pos€SphereSurface

MaxMismatch
|Sphere Surface| < MaxMismate i‘




Sphere

Spheres - Growing spheres, radius 4
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Left: Mismatch value 9/16 exceeds the allowed rate MaxMismatch
Middle: Stored radius values after applying spherical filter
Right: Spherical dataset created by the spherical filter

@ Sphere growing for every voxel returns data set with the
following properties:

o The sphere radii represent the blood vessels with a diameter
of at least 2 - StartRadius

e Blood vessels could be reconstructed with the spherical
dataset by joining the sphere volumes

o Spheres totally covered by larger spheres can be dropped if we
are only interested in a representative data for blood vessels e
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Gradient - Computation
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Gradient computation with central differences

dSphereDatapos
65pher‘<seﬁatapos

GradientDatapos = 5y
& SphereDatapos
6z

SphereData,s 1 (1,0,0) — SphereDataps (10,0
= | SphereData, o (0,1,0) — SphereDatajos_(0,1,0) | - 0.5
SphereDatap, 1 (0,0,1) — SphereDatap,s (0,0,1)




Gradient

Gradient - Meaning

Gradient vectors scaled by 2

0,0/0,0/00/00/|0,0/00/0,0|0,0 0,0

0,0/0,1|-1,0/-3,0-2,-2/0,0/0,0|0,0 0,0

0,0/1,3|0,1-1,-1}-2,-3/-2,-2/ 0,0| 0,0 | 0,0
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0,02,23,31,0}1,-1-3,-2-2,-2/ 0,0 | 0,0
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0,0/0,0|2231|0,11,-1-2,-2}-2,-2| 0,0

0,0/0,0/(20(22|1,1/0,0/-1,0/0,-2/0,0

0,0/0,0/00/22|22/03|0,0/|0,00,0

0,0/0,0/00/00|0,2|22|22|120,0

0,0/0,0/00/0,0/0,0/00/0,0|0,0 0,0

@ Gradients aim to the local center of largest sphere in
neighborhood
= Can be used for efficient simulation of origin problem
o Growing the sphere forces movement to the center of
vessel
e Movement direction is given by gradient

e Gradient can be smoothed if sphere data has a high frequency x



Particles

Particles - Emission and movement

Particle emission and movement along the gradient

o Emit particles starting on voxels with
sphere > MinEmissionRadius

@ MinEmissionRadius avoids emitting particles in small
vessels (for registration unnecessary) and positive-false
segmented areas like bones

ol



Particles

Particles - Emission and movement

Particle emission and movement along the gradient

o Emit particles starting on voxels with
sphere > MinEmissionRadius
@ MinEmissionRadius avoids emitting particles in small
vessels (for registration unnecessary) and positive-false
segmented areas like bones
@ Particles follow the local gradient vector
@ Length of gradient vector is small at the center of vessels
@ Particle stops if the length of gradient vector is below a i
specific value



Graph - Construction

Graph reconstruction

@ Representing blood vessels by graphs
@ Radius is also stored for each node for advanced registration

@ Reduces matching of the large particle amount to matching
of sparse graph nodes

ol
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Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

@ Each particle has a flag used which is set if the particle is
already represented by an edge
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Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

@ Each particle has a flag used which is set if the particle is
already represented by an edge

@ Search for neighbored particle within a specific range
[min_dist, max_dist] where the used flag is not yet set

@ Take particle which is furthest away as node NextNode

=
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Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

@ Each particle has a flag used which is set if the particle is
already represented by an edge
@ Search for neighbored particle within a specific range
[min_dist, max_dist] where the used flag is not yet set
@ Take particle which is furthest away as node NextNode
o Set used flag for all particles within the range max_dist i



Graph

Graph - Construction - Step 1 of 3

Connecting neighbored particles to strips

@ Each particle has a flag used which is set if the particle is
already represented by an edge
@ Search for neighbored particle within a specific range
[min_dist, max_dist] where the used flag is not yet set
@ Take particle which is furthest away as node NextNode
o Set used flag for all particles within the range max_dist i
@ Continue at the node NextNode -



Graph

Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area
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Start Node

@ Start each edge construction at unused particle with
maximum radius = First node can have 2 neighbors
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Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area
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Start Node

@ Start each edge construction at unused particle with
maximum radius = First node can have 2 neighbors

@ Setting all used flags of first node within the range max_dist
avoids creating edges in the opposite direction
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Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area
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Start Node

@ Start each edge construction at unused particle with
maximum radius = First node can have 2 neighbors

@ Setting all used flags of first node within the range max_dist
avoids creating edges in the opposite direction

@ = Set used flags only for particles which are also in the
range max_dist of NextNode
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Graph - Construction - Step 2 of 3

Handling of first strip node within non-forking area

o,
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Start Node

@ Start each edge construction at unused particle with
maximum radius = First node can have 2 neighbors

@ Setting all used flags of first node within the range max_dist
avoids creating edges in the opposite direction

@ = Set used flags only for particles which are also in the
range max_dist of NextNode

@ After creation of a stripline "in one direction”, restart again  __
at first node to extend stripline in opposite direction
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Graph - Construction - Step 3 of 3

Connecting strips to graphs

New Particle

S

@ The Gradient is very high on vessel forkings = strips are
disconnected




Graph

Graph - Construction - Step 3 of 3

Connecting strips to graphs

New Particle

S

@ The Gradient is very high on vessel forkings = strips are
disconnected
@ Use particle emission to create a connection at forkings
o Particle is emitted with a displacement in the direction

described by the two corner nodes

e This particle follows the gradient until the gradient value is
below a specific value

o If there's a node N, within the range max_dist: connect ———
corner node with node N, ‘l
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Matching - Terminology

Matching graphs

e Finding transformation matrix M



Matching

Matching - Terminology

Matching graphs

e Finding transformation matrix M

e Projecting nodes P from matching graph (applying matrix
M for each point) results in points P’ in " destination
space”

@ Minimize distance between nodes P’ and nearest edge of  ___
destination graph x



Matching

Matching

Transformation Matrix M projecting point P to P':
miy1 M2 M3 Mg
M.p— |M1 mp2 m3 M4l 5 pr

m31  m32 m33  MmM34
m41 M4 M43 Mg 4

Transformation matrix M for 3D CT data can be computed with
4 nodes P', P/, Pk P! of source graph and 4 points
O', 0¥, Ok, O' of destination graph (given in homogeneous form)

Pl Pl Pi

Y 1 mi 1 o
Pl P, P 1 ma| _ |0
PEPE O PE 1 my,3 B o7k
foe A ) Ame %
P. P, PL 1 ma o;
P PP 1 ma| |0
PEPE O PE 1 ms3) — | Of
P. P, Pl 1 m2,4 o,
== | o
x Y z m3 1 z
PL PP 1 m3.2 B o’
PEPYPE 1 m3 3 - of
L A | m3,4 ol




Matching

Matching - Matrix decomposition

@ Creating a matrix based on all possible node combinations can
produce unlikely mappings

large shearings

large scalings / negative scalings

large rotations

large translations
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Matching

Matching - Matrix decomposition

@ Creating a matrix based on all possible node combinations can
produce unlikely mappings
o large shearings
o large scalings / negative scalings
e large rotations
o large translations

@ Even an unlikely mapping can produce wrong matching with
best computed matching

@ Decompose matrix to basic transformations and restrict
transformations



Matching

Matching - Matrix decomposition (cont’)

@ Matrix M is decomposed in
o 3 Translation components t,, t,, t, by matrix T
o 3 Rotation matrices R, around axis n: R, Ry, R,
o 3 Scaling components s, s,, s, with matrix S
o 3 Shearing components shy 5 3 in shearing matrix H

e M=H-S-R,-R.-R,- T



Matching

Matching - Matrix decomposition (cont’)

@ Matrix M is decomposed in

3 Translation components t,, t,, t, by matrix T

3 Rotation matrices R, around axis n: R, Ry, R,

3 Scaling components s,, s,, s, with matrix S

3 Shearing components shy 5 3 in shearing matrix H

e M=H-S-R,-R«-R,- T
@ Decompositions "simulate” different basic transformations

e First the translation is done to align both datasets

e Secondly the translated dataset is rotated around y axis for
better matching

o ...

@ Decomposition to basic transformations give the information
for an "early drop” (omit the current matrix)
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Matching - Translation

@ Translation Matrix T =
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Matching - Translation

@ Translation Matrix T =

@ Translation decomposition:

my1 mpp  mp3 0 1

M=M .T=|m1 my 2 my 3 0 . 0
m31  m3> m33 0 0

1 0

coro

0 0 0

0 ty
0t
1 4
0o 1

(Search values for T to eliminate the rightmost column)



Matching

Matching - Translation

@ Translation Matrix T =

@ Translation decomposition:

my1 mpp  mp3 0 1

M=M .T=|m1 my 2 my 3 0 . 0
m31  m3> m33 0 0

1 0

coro

0 tx

0t

1 &
0 0 0 0 1
(Search values for T to eliminate the rightmost column)

e Computation of the rightmost column values of M gives the
implicit solution for T

m1 M2 M3 t my4
mp 1 m2 2 my3 | - (t2)] = |ma
m31  m32  m33 t3 m3.4



Matching

Matching - Rotation

Rotation matrices (example for given y axis):
@ Use rotation matrices (from QR decomposition) to set values
below diagonal to 0

cos(a) 0 sin(a) O

r_| 0 1 0 o0
Y —sin(a) 0 cos(a) O
0 0 0 1



Matching

Matching - Rotation

Rotation matrices (example for given y axis):
@ Use rotation matrices (from QR decomposition) to set values
below diagonal to 0

cos(a) 0 sin(a) O

r_| 0 1 0 o0
Y —sin(a) 0 cos(a) O
0 0 0 1

. . . "
o Eliminating entry mj ;:

M’:M”<Ry<:.>M/-Ry_1:M”

Assuming m/3/,1 should be set to O:

!
’ ro m3 1
0 = mjy jcos(a) — my 3sin(a) <= a = atan -
ms3 3

Computation of R, is done by using the inverted angle o L3



Matching

Matching - Scaling and Shearing

@ Result after translation and rotation elimination is an
upper diagonal matrix M)

@ Final decomposition returns the shearing and scaling matrix

MO =H.§ —

(3) (3) (3)
M1 M2 M3 1 h h . Sx .
m(g) m(3) 1 h3 E
2,2 2,3 = . . Y
(3) . 1 . . Sz
M3 - 1 1
1
o) s =) s = of)
(3)
3 M2
hy - sy = m(l,)2 < h = s
(3)
)] _ M3
h2<szfm1y3<:>h27 =
(3)
(3) m,3

h3<sZ:m2y3<:>h3:
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Matching

@ To work with minimal transformations of permitted matrices,
pretranslate the center of image to (0,0,0)
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Matching

@ To work with minimal transformations of permitted matrices,
pretranslate the center of image to (0,0,0)
@ Empirical values to match 256x256x200 CT scans:

e maximum relative rotation angle: 90°
o scale factor € [0.7;1.3]
o shear factor € [—0.3;0.3]
e maximum relative translation: 100
1 . . —128
e pretranslation matrix: p= |- ' jgg)
1



Matching

Matching - Computation of matching difference

Nearest
) Point
Projected

Point \

Matched R
\S\Po:_\e:/

Destination Graph

o If the matrix is valid, nodes P are projected to the
destination graph space giving P’

ol
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Matching - Computation of matching difference

Nearest
i Point
Projected

Point \

Matched |
\s\%:__\e:/

Destination Graph

o If the matrix is valid, nodes P are projected to the
destination graph space giving P’
@ For every projected node P’, the nearest node P” of the

destination graph is searched
@ For both adjacent nodes of P” the smallest distance to the

edge is taken

ormil
x



Matching

Matching - Computation of matching difference

Nearest
i Point
Projected

Point \

Matched R
\s\%:__\e:/ '

Destination Graph

o If the matrix is valid, nodes P are projected to the
destination graph space giving P’

@ For every projected node P’, the nearest node P” of the
destination graph is searched

@ For both adjacent nodes of P” the smallest distance to the
edge is taken

@ Best matching matrix M: Projection with the smallest sum i‘
of distances for all nodes P’ to the corresponding edges
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@ Direct implementation would take more than half an hour
to match a 256x256x200 CT dataset to reference data
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Efficient implementation

Efficient implementation

@ Direct implementation would take more than half an hour
to match a 256x256x200 CT dataset to reference data
@ Sphere filter:
o Sphere filter has to be applied for every point!
o Graph filter:
e Storing a few particles with a full grid would be a waste of
memory
o Computation time for nearest points with O(r9) increases with
resolution n?
e Matching:
e Using naive approach for a graph with N nodes there would be

2
0 <<(N’\_"4),> ) matching possibilities taking hours to

compute



Efficient implementation

@000

Sphere filter using FFT

@ Applying sphere filter is a convolution for each sphere size

@ Convolution can be done very efficiently in frequency space,
specially for large kernels
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Sphere filter using FFT

FFT based on periodical data

e =

@ Boundary conditions: Data fields have to be padded with
extra data to work with existing FFT libraries (e.g. FFTW)
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@ Boundary conditions: Data fields have to be padded with
extra data to work with existing FFT libraries (e.g. FFTW)

o Applying the standard FFT is based on a periodical
function

o Multiplying the kernel in frequency room would take values
for spheres from opposite side
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Sphere filter using FFT

FFT based on periodical data

e =

@ Boundary conditions: Data fields have to be padded with
extra data to work with existing FFT libraries (e.g. FFTW)

o Applying the standard FFT is based on a periodical
function

o Multiplying the kernel in frequency room would take values
for spheres from opposite side

@ Large spheres at borders don't represent the local data i‘
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Sphere filter using FFT

FFT based on symmetric data
] ]
BN

aE T

Left: Symmetric data - Right: Kernel

@ Using real data FFT assuming domain is symmetric on
borders

ol
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Sphere filter using FFT

FFT based on symmetric data

[] []
\\l n J/l/
[ |
I [
/ \
T T
Left: Symmetric data - Right: Kernel

@ Using real data FFT assuming domain is symmetric on
borders

@ Introduced errors just depend on the local data



Efficient implementation
coeo

Sphere filter using FFT

FFT based on symmetric data

[] []
\\l n J/l/
[ |
I [
/ \
T T
Left: Symmetric data - Right: Kernel

Using real data FFT assuming domain is symmetric on
borders

Introduced errors just depend on the local data

Kernel has to be initialized for only $ of the data domain

Reduces the computation from > 20 minutes to a few seconds ...
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Handling Particles with KD-Trees

http://en.wikipedia.org/wiki/Image:3dtree.png

@ KD Trees store arbitrary points using a tree like structure



Efficient implementation
oooe

Handling Particles with KD-Trees

http://en.wikipedia.org/wiki/Image:3dtree.png

@ KD Trees store arbitrary points using a tree like structure
o Efficient operations to find points within a given radius

=
@ = Graph can be constructed within a second x
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Restricting Transformation Matrices

2
e O <((N'\_“4),) > matching possibilities

o Discretization of points introduce error ¢;
@ Small anatomical differences of points introduce errors ¢;
o Error in matrix after construction becomes less for far distant

points
e Use only nodes with a distance of at least § to create a
better conditioned problem



Efficient implementation
°

Restricting Transformation Matrices

2
0] <((N_4)!) > matching possibilities
Discretization of points introduce error ¢;
Small anatomical differences of points introduce errors ¢;
o Error in matrix after construction becomes less for far distant
points
e Use only nodes with a distance of at least § to create a
better conditioned problem

@ = avoids the computation of the transformation matrix for
many points

@ Omitting impossible node combinations and nodes
producing a bad conditioned problem decreases
computation time to a few seconds



Matching 2D CT slices using only midpoints of edges as graph matching
nodes

3D CT heart blood segmentation and registration:
@ Can be handled in an efficient and fast way
o Takes just a few seconds on recent quad-core-systems

@ Using translation matrices offers registration of invisible
areas (yellow line in right image) i‘



Results
[1e}

Possible improvements

o Use sparser representation of graph using extrapolation or
spline curves
e Using interpolation with spherical filter (aliased kernel) for
more accurate sphere radii
@ Graph construction: include possible omitted nodes at strip
endings
e Randomized/hierarchical matching points selection
(maybe using hints of graph)
@ Matching graphs
e Using heuristics from graphs for matching
e Comparing edge slopes
@ Use matching positive abort if computed overall distance
is below a certain value (assuming this is the correct
matching)



Results
oce

Thank you for your
attention

Any questions?

)
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CT Datasets: Nuklearmed. Klinik der TU Muenchen,
Germany

FFTW: http://www.fftw.org/
KD-Tree: http://libkdtree.alioth.debian.org/
DICOM-Toolkit: http://dicom.offis.de/dcmtk.php.de
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