
TECHNISCHE UNIVERSITÄT MÜNCHEN

University Hospital Rechts der Isar:
Clinic of Orthopaedics and Traumatology

Department of Nuclear Medicine

Automated Segmentation and Registration of
CT Coronary Blood Cavities based on Spherical

Representations

Automatische Segmentierung und Registrierung von CT Herzblutgefäßen
basierend auf sphärischer Repräsentierung

Interdisciplinary project in the minor subject
”theoretical medical science”

Author: Martin Schreiber
Advisor: PD Dr. Rainer Burgkart
Supervisors: Dipl. Phys. Dr. Stephan Nekolla
Submission Date: May 15, 2009

Contents

1 Acknowledgement 5

2 Introduction 7
2.1 Motivation . 7

3 Filters and Methods 9
3.1 Overview . 9
3.2 Spheres . 11

3.2.1 Filtering in spatial domain 11
3.2.2 Sphere filter in the frequency domain 12

3.3 Gradient . 17
3.4 Particles . 19
3.5 Graph . 21
3.6 Matching and Registration . 25

3.6.1 Transformation Matrix . 25
3.6.2 Matching differences . 26
3.6.3 Matrix decomposition . 26
3.6.4 Restrictions . 30
3.6.5 Pretranslation . 30
3.6.6 Reduce matching runtime 31

4 Results 35
4.1 2D Matching . 35
4.2 3D Matching . 37
4.3 Conclusions . 40
4.4 Further utility . 41

5 Possible further Improvements and Usage 43

3

The process of preparing programs for a dig-
ital computer is especially attractive, not
only because it can be economically and sci-
entifically rewarding, but also because it can
be an aesthetic experience much like com-
posing poetry or music.

Donald E. Knuth (1938 -)

1
Acknowledgement

First of all I would like to thank my advisor PD Dr. Rainer Burgkart for giv-
ing me the freedom to implement new methods and ideas, which were developed
during the project. I also want to thank Dipl. Phys. Dr. Stephan Nekolla who
provided me with the necessary informations about recent coronary segmentation
and registration processes, the useful discussions with him and for the support
with 3D CT datasets and the enhanced CT datasets for the 2D test cases used in
this paper. Furthermore I would like to thank Dipl. Inf. Univ. Manuel Schröder
and Dr. rer. nat. Heiko Gottschling for their support during the IDP.

I also want to thank Dipl. Math. Dr. rer. nat. Stefan Zimmer and PD Dr. Michael
Bader for the useful discussions about applying the sphere filter, the mappings,
etc. as well as Brian Jensen and Dipl. Math. Johannes Mittmann for proof read-
ing this document.

The basic idea for the filter was to find characteristic lines for coronary datasets
representing blood vessels (using the slope to find similar lines in the reference
dataset). After figuring out that this is not enough information for a working
matching, a graph was constructed as described in this paper. The next try was
to compute a graph matching by comparing the similarity of slopes at the graph
edges together with a matching of graph forkings or projecting forkings of one
graph to an point on an edge of the other graph. This also failed due to the
underestimated NP hard complexity. Finally a successful way was found using
the affine transformations for the matching based on the graph nodes.

This project was created using only Free Open Source products using Debian
Linux [10], the FFTW Library [8], libkdtree++ [7] and the DICOM toolkit [3].

The source of this project is released under GPL and can be found at [13].

5

Artificial Intelligence: the art of making
computers that behave like the ones in
movies

Bill Bulko 2
Introduction

Segmentation and registration of different medical datasets is a wide ranging area
using different approaches like edge matchings, support vector machines, modifi-
cation of the famous RANSAC algorithm, morphological operations or using an
iterative method that modifies a geometric transformation mapping the datasets
unto each other until an ideal is found. All methods use either direct voxel
structures, which are represented by the dataset voxels itself or indirect data like
gradients computed from voxel values or edge information (e. g. using a sobel
edge detection).

2.1 Motivation

Figure 2.1: Example coronary CT slices

7

CHAPTER 2. INTRODUCTION

Current algorithms work on a high amount of matching elements from both
datasets. Because of this a denser (more specific form of) information should
be used, representing characteristic information of both datasets. The aim of
this project was to match different CT coronary datasets (2D example slides
are given in Figure 2.1) taken from different patients and to registrate those
coronary CT scans with a reference coronary dataset. Usually this has to be
done by an assistant or a doctor manually to improve the comparison of datasets
e. g. finding an unhealthy increase of heart muscles, finding the transformation
for PETs taken at the same time as the CT or speeding up the diagnosis by
segmenting and registering known areas.
Blood cavities seem to be the most characteristic information if coronary CT
datasets have to be registered. Searching for a good representation for blood
vessels, spheres seem to be applicable because blood vessels in human bodies
appear in a tubular form which can be represented by placing spheres along a
line following the centers of the blood vessel. Possible problems like creation of
the graph edges and disjointed blood vessels at bifurcations have to be solved to
create a representative data. After this step the blood vessels can be represented
by joining the volumes of the spheres along the line. Using this line of spheres,
the blood vessels are represented by a very dense amount of graph edges and
nodes. The graph nodes of both graphs are then used to create and use a matrix,
mapping one dataset to the reference dataset. The important part is to find
efficient algorithms for the computation of the underlying graph as well as a fast
determination of the best matrix mapping one CT scan to the reference CT scan.

8

I do not fear computers. I fear the lack of
them.

Isaac Asimov (1920 - 1992) 3
Filters and Methods

3.1 Overview

From a very general point of view, spheres have to be placed along the center
line of blood vessels with the borders of the blood vessels touching the surface of
the sphere. This motion of the sphere through the blood vessel can be imagined
like the actions a chimney sweeper makes when cleaning a smoke stack (3.1),
increasing the sphere radius if the sphere does not touch the vessel borders and
shrinking the sphere if the movement gets stuck due to a lower vessel radius.
Creating a line out of the sphere centers storing the sphere radii along the line
would give the representation of the vessel.

Figure 3.1: Simulated movement of a sphere within the blood vessel

From a computer scientist perspective, this simulation would take a lot of
computation time. First of all, the movement itself has to be computed: Where
should the sphere be moved to, what alternative positions exist, where should
we start moving the sphere from? Secondly the program has to perform collision
checking in addition to computing the acting force on the sphere on every move-
ment in all spatial directions. If these computations have to be done just once for
every final sphere, this would not be any problem but in reality the algorithms
would have to try these collisions for many possible spatial movements. The
third main problem is an extra degree of freedom necessary for the simulation:
The growth and shrinking operations for the moving sphere makes the algorithm

9

CHAPTER 3. FILTERS AND METHODS

too inefficient when using the direct implementation of the ”chimney-sweeper”
method.
Even if a fast method would exist, there still remain some unsolved problems
like handling vessel bifurcations or complex blood cavities like those of the heart
ventricles.
Instead of implementing the simulation directly, the operations can be represented
by a stack of different basic filters handing back almost the same data with the
advantage that the previously mentioned problems (bifurcations, non-tubic ves-
sels, ...) can be solved fast and efficiently as well as that the implementation
is very fast using advanced mathematics. The filters used include a spherical
growing filter used for every point, a gradient filter representing the direction to
the next neighboring sphere with a larger radius, a particle emission filter to find
vessel centers and the graph construction as the final filter to compute the graph
based on the particle distributions (and to solve the bifurcation problem using
the gradient field).
Finally the transformation matrix is computed by determining the underlying
matrix using the discrete graph nodes. The factorial computation time to com-
pute all possible matrices is reduced by analyzing the decomposed matrices and
using conditional criteria.

10

3.2. SPHERES

3.2 Spheres

The first sphere filter calculates the possible sphere positions computing the max-
imum allowed sphere radii at each voxel. This filter can be imagined by expanding
a sphere outwards at every voxel, fixing the sphere’s center to the recent voxel
and to stop the growth if too many voxels covered by the sphere are out of a
range given by the contrast medium injected into the blood. For each new voxel
- representing the center of the local sphere - the maximum allowed sphere radius
is stored to a new array SphereData.

3.2.1 Filtering in spatial domain

FlagData[pos] =

{
1 winmin ≤ value[pos] ≤ winmax

0 else
(3.1)

Figure 3.2: Left: Zoomed CT data for small vessel, Middle: flags set by thresh-
olding, Right: thresholded image of example CT slice

Using sphere growing starting with a radius equal to 1 on a CT dataset would
cause an early termination of the sphere growing algorithm for many points even
if the blood vessel is much larger than described by the sphere radius. The reason
is that CT scans underly a noise forcing the spherical growth with a small radius
to abort very early. Therefore the spherical growth starts with a minimum radius
StartRadius to use an early termination by using the mismatch criterion given
by (3.2). If this test fails the radius for the local sphere is set to 0. Apparently
the StartRadius specifies the smallest blood vessel which can be segmented by
the sphere filter and depends strongly on the intensity range and the noise in the
CT dataset. ∑

pos∈StartSphere

FlagData[pos]

|Voxels in Sphere|
< maxMismatch (3.2)

11

CHAPTER 3. FILTERS AND METHODS

Figure 3.3: Applying sphere filter for start radius

If the first test for the sphere with radius StartRadius was successful, the
radius is successively incremented while checking the new surface values against
the abortion criterion (3.3). The approach using the overall sphere volume for
the abort criterion is avoided due to the case that small non-blood values may
undergo the segmentation because they have a small relative amount on the seg-
mentation criterion than using just the surface criterion. One example for this
special case is the segmentation of the blood around cardiac valves (even if this
is not important for registration of the given CT datasets) which are just visible
by a volume with a thickness of just a few voxels in CT datasets. Starting the
sphere growth near the cardiac valve could cause the sphere growth over the valve.
Interpreting just the new surface voxels improves the spherical growth to stop
earlier if the valve surface does not aim straight through the sphere surface. A
more apparent reason is the spherical growth touching the vessel borders. Using
only the surface values of the sphere gives a better gate to detect more accurate
sphere radii which should represent only blood cavities.

∑
pos∈SphereSurface

FlagData[pos]

|Voxels on sphere surface|
< maxMismatch (3.3)

After the sphere growing is finished for each individual voxel, the maximum
sphere radius is stored at that point (Figure 3.5). This data can be used to
reconstruct the original blood vessels by joining all spheres to a large volume.

3.2.2 Sphere filter in the frequency domain

An implementation of this spherical filter like described above would cause a
computation time of more than half an hour on recent quad core systems with
the usage of a small maxMismatch gate of 5 percent. This computation time
increases more and more for larger blood vessels.
One of the main reasons to use spheres for segmentation is that they are rota-

12

3.2. SPHERES

Figure 3.4: Left: Sphere growth for radius 3 with 2 mismatching voxels, Right:
Mismatch value 9/16 exceeds the allowed rate maxMismatch

Figure 3.5: Left: Stored radius values after applying spherical filter, Right: Spher-
ical dataset created by the spherical filter

tional invariant. Therefore it is not necessary to handle possible rotations while
applying the sphere filter. This is also an advantage if we are only interested
in the left-hand side of (3.3) for a constant sphere radius because with this pre-
requisite the filter for a constant radius can be applied by a convolution on the
flag field using a kernel given by the points on the sphere surface. Therefore the
sphere filter can also be applied by convolutions as shown in Figure 3.6 while
incrementing the radius for the kernel (Algorithm 1).

For each convolution a test is done for every voxel whether any output data
has been written yet (SphereData[pos] >= 0) followed by a test if the com-
puted mismatching values force the sphere to stop growing (ConvResult[pos] <
maxMismatch). If both tests are positive, the sphere growth for the recent call
is stopped. The variable writtenData is used to count the written values of the
output data to stop the spherical growth if there are no growable spheres left
(writtenData 6= voxelCount).

Obviously this algorithm seems to contain lot of overhead compared to the

13

CHAPTER 3. FILTERS AND METHODS

Algorithm 1 Sphere filter using convolution in spatial room

1: sphereRadius = startRadius; {current sphere radius}
2: voxelCount = |Ω|; {number of voxels within CT dataset}
3: writtenData = 0; {written output pixels}
4: maxRadius = MAX(Ωi); {maximum sphere radius}
5: ∀pos ∈ Ω : SphereData[pos] = −1; {Initialize output data}
6:
7: while writtenData 6= voxelCount and sphereRadius < maxRadius do
8: ConvResult = CONV (FlagData, ConvKernelsphereRadius) {do convolu-

tion in spatial room}
9: for all pos ∈ Ω do

10: if SphereData[pos] >= 0 then
11: if ConvResult[pos] < maxMismatch then
12: SphereData[pos] = sphereRadius;
13: writtenData+ +;
14: end if
15: end if
16: end for
17: sphereRadius+ +;
18: end while

direct implementation. Performing the convolution in frequency domain instead
of spatial domain reduces the computation time dramatically, especially on larger
kernel sizes.

Using the Fast Fourier Transformation (FFT) on complex values would re-
sult in a periodical continuation of the FlagData array as shown in Figure 3.7.
Therefore the convolution at the borders with the given kernel would include
flag data from the opposite side of the domain Ω which does not represent the
local neighborhood. To solve this problem the FlagData array can be enlarged on
borders using e. g. a clamping ”texture” border condition with the disadvantage
of a growing computation time and memory usage depending on the size of the
clamped border.

Using a modified version of the Fourier Transformation, assuming mirrored
data at borders and real valued spatial data [11], the modified Fast Fourier Trans-
formation on real data does not introduce anymore spatial data which does belong
to the given local dataset. Because of the mirrored data at the borders the kernel
has to just be initialized for 1

4
of the cells in 2D as shown in Figure 3.8 and 1

8
of

the cells in 3D. The resulting algorithm (2) reduces the computation time from
more than half an hour for high resolution CT scans to less than one second for
each kernel radius on modern computer systems.

14

3.2. SPHERES

Figure 3.6: Sphere filter using convolution - Left: FlagData, Right: Kernel for
first sphere

Figure 3.7: FFT based on periodical data

Figure 3.8: Left: Symmetric data - Right: Kernel

15

CHAPTER 3. FILTERS AND METHODS

Algorithm 2 Sphere filter using convolution in frequency domain

1: sphereRadius = startRadius; {current sphere radius}
2: voxelCount = |Ω|; {number of voxels within CT dataset}
3: writtenData = 0; {written output pixels}
4: maxRadius = MAX(Ωi); {maximum sphere radius}
5: ∀pos ∈ Ω : SphereData[pos] = −1; {Initialize output data}
6: FlagDataFreq = RFT (FlagData); {Real Fourier Transformation of
FlagData}

7:
8: while writtenData 6= voxelCount and sphereRadius < maxRadius do
9: ConvKernelFreq = RFT (ConvKernelsphereRadius); {RFT of kernel}

10: ConvResultFreq = CONV FREQ(FlagDataFreq, ConvKernelFreq);
{convolution in frequency domain by multiplication}

11: ConvResult = IRFT (ConvResultFreq); {Inverse RFT}
12: for all pos ∈ Ω do
13: if SphereData[pos] >= 0 then
14: if ConvResult[pos] < maxMismatch then
15: SphereData[pos] = sphereRadius;
16: writtenData+ +;
17: end if
18: end if
19: end for
20: sphereRadius+ +;
21: end while

16

3.3. GRADIENT

3.3 Gradient

After the spherical filter is applied, the radius of the maximum sphere is stored
at each voxel. This information can be used to get the direction where a sphere
would move if it is enlarged at a position near a vessel border. The stored radii
values are larger for the vessel centers, therefore neighboring sphere radii which
are larger than the sphere centered at the current voxel represent the direction
where a sphere will move if its size is increased as shown in Figure 3.9. To avoid
searching the adjacent cells, the sphere radii can be seen as a scalar potential
field Φ giving the direction to the vessel centers by the spatial derivative of the
potential using central differences:

GradData[pos] = 1
2

SphData[pos+ e1]− SphData[pos− e1]
SphData[pos+ e2]− SphData[pos− e2]
SphData[pos+ e3]− SphData[pos− e3]

 ≈ ∇Φ

with e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T

An important value is the length of the gradient vectors: Those become less
for vessel centers because the opposite potential values eliminate themselves due
to the symmetric behavior of sphere radii at centers of tubes.

⇒

Figure 3.9: Left: Computing gradients from sphere radii using central differences,
Right: Gradients represent vectors aiming towards vessel centers. The brighter
an arrow is, the shorter is the length of the gradient vector.

17

CHAPTER 3. FILTERS AND METHODS

Figure 3.10: Gradients computed for given spherical data

18

3.4. PARTICLES

3.4 Particles

Because we are interested in vessel centers, particles are injected at each possible
position of the domain Ω when a radius larger than zero is stored at the cor-
responding voxel in the spherical data array. Each particle follows the gradient
travelling a maximum of one cell per iteration until the length of the gradient is
below a specified value stopGradient.

The second parameter emitRadius is used to avoid the injection of particles
in small areas like the backbones segmented at the bottom of Figure 3.10. This
permits an easy method to eliminate small structures which are not necessary
for registration, thus improving the computational performance and avoiding the
emission of particles at vessel borders. If the length of a gradient at the recent
particle position is below the value stopGradient, the particle position is stored
in a dataset together with the sphere radius at this voxel position.

Particles with the same position are eliminated easily by using a set for the stor-
age. Using 1.0 for stopGradient as the criteria to stop particles at a respecive
gradient with a length below that value results in the right particle distribution of
Figure 3.11 for our 2D example. The particle filter is summarized in algorithm 3.

Figure 3.11: Particle emission with parameters emitRadius = 22,
stopGradient = 1, Left: Particle distribution after the 1st iteration, Right: Par-
ticle distribution after applying the particle filter

19

CHAPTER 3. FILTERS AND METHODS

Algorithm 3 Particle filter

1: for all pos ∈ Ω do
2: maxIterations = MAX(Ωi) {Safety limit to avoid particles iterating in-

finitely in a circular way}
3: particlePos = pos
4: while maxIterations ≥ 0 do
5: gradient = gradData[particlePos];
6: length = |gradient|;
7: if length < stopGradient then
8: break;
9: end if

10: particlePos = particlePos+ gradient/length;
11: maxIterations−−;
12: end while
13: end for

20

3.5. GRAPH

3.5 Graph

One of the most crucial parts is the graph construction, which reduces the particle
representation to a graph (joining spheres centered at particles with the sphere
radius stored at the particle). To reconstruct the blood vessels, spheres can be
distributed along the edges interpolating the radius given by the two nodes which
create the edge. By joining the volumes of the edge-distributed spheres we are
able to reconstruct almost the original blood vessels assuming that the edges
are always aligned in the centers of vessels and that the vessels have a circular
cross section. This makes it possible to convert the particle representation to a
graph based representation giving us much more information like bifurcations,
alignments of the vessels and a structured view of the blood vessels which can
also be used for advanced registration methods (e. g. using graph matching). An
example of a desired graph construction is given in Figure 3.12. The graph con-
struction is based on three main steps, which are in turn based on neighborhood
assumptions to insert edges created from particles within a specific neighborhood.

Figure 3.12: Left: Example particle distribution after particle filter, Middle:
Constructed graph, Right: Graph construction on CT slice

The first step of the edge construction creates an edge based representation for
the particles giving a set of striplines (disconnected graphG with degree(G) ≤ 2).
Each particle is extended by an usedF lag which is set initially to false to handle
the information if the particle is already representated by an edge. The algo-
rithm iterates as long as there is no particle left which is not yet represented by
an edge. The reconstruction is based on the idea of drawing a line to connect
particles. We start at the particle with an unset usedF lag and the maximum
sphere radius because this particle is probably the most important one centered
in a large blood cavity. This particle is used as the node initialNode for the
new stripline. To insert a new edge to the graph a well fitting neighbored node
has to be determined. To avoid creating edges that are too small, which would
produce an undesired graph node density as well as edges that are too small
(to avoid breaking our prerequisite for a representative edge) the nodes with an

21

CHAPTER 3. FILTERS AND METHODS

unset usedF lag are searched within a specific range [mindist,maxdist] as shown
in Figure 3.13. To produce the sparsest graph-node representation, the particle
within a specified range with the largest distance is taken as nextNode. If more
particles fulfill this restriction, the second criterion is to use the particle with
the maximum sphere radius as nextNode. After determination of this node all
flags usedF lag within the radius maxdist are set to true to avoid creating edges
backwards if we continue extending the graph at nextNode.

Figure 3.13: Searching neighbor nodes for graph construction

The second step handles the probably existing edges in the opposite direction:
After creation of a stripline starting at the remaining particle with the largest
sphere radius there may be particles which should be included into this stripline
at the starting node. E. g. when the initialNode lies in the center of a line.
These particles would have a set usedF lag which avoids the immediate creation
of edges with this particles. Therefore the flag for the initialNode is handled
specially: Only the flags of nodes within the range of the startNode and in the
range of nextNode are modified as given in Figure 3.14. This avoids walking
backwards and makes it possible to extend the stripline to the opposite side by
starting the edge creation for a second time at startNode.

Figure 3.14: Handling of first strip node

22

3.5. GRAPH

The last step is necessary to connect the striplines at bifurcations: Because the
gradient at bifurcations forces the particles to spread away, avoiding a connection
of the striplines (Figure 3.12), those connections have to be specially handled.
One method to create the connections is the emission of a particle near the corner
nodes: A virtual particle is emitted starting at a small displacement aimed in the
direction of the two ending stripline nodes (Figure 3.15). The particle then follows
the gradient with the same parameters as it was done for the particle filter. If
the particle stops, the neighborhood is searched for possible neighbored nodes,
and if such nodes are found, the nearest one is taken as neighboredNode. With
this the junctions of the corner nodes of the striplines and neighboredNodes can
be found and those junctions are used to create a graph with a degree greater
than 2, thus providing the final graph with a representation for the bifurcations
by inserting respective junction edges.

Figure 3.15: Connecting strips to grahps

The virtual particle emission handles the two main different cases of bifurca-
tions: The case of an unsymmetrical vessel bifurcation with one large vessel and
two smaller vessels with a particle distribution as shown in Figure 3.15 and the
case of a large sphere at the bifurcation where the particles gather at the center
point creating a ”one node strip” of the sphere. The last one is also handled by
the given algorithm because a particle which is emitted with a small displacement
from an outgoing stripline would move to the center of the large sphere. There-
fore this kind of bifurcation is represented correctly if every outgoing stripline
emits such a particle connecting the corner nodes to the ”one node strip” at the
sphere’s center.

Storing a few particles with a full grid would be a waste of memory and also
the computation time for nearest points with O(rd) increases with the resolution
nd. To override this situation we use a kd-tree (Figure 3.16) which can access
the particles efficiently reducing the runtime to O(log N) on average (where N is
the number of particles) because finding the nearest neighbors within a kd-tree
is done by a depth-first-search.

23

CHAPTER 3. FILTERS AND METHODS

Figure 3.16: Storing and accessing particles using kd-trees,
http://en.wikipedia.org/wiki/Image:Kdtree 2d.svg

24

3.6. MATCHING AND REGISTRATION

3.6 Matching and Registration

To improve the comparsion of different CT scans the datasets should be auto-
matically aligned, matching blood cavities like the example given in Figure 3.17.
This enhances the quality of the medical care in addition to saving a lot of time
for the Doctors, who would otherwise be forced to do the registration manually,
becase a straight comparison of two unaligned CT scans is quite difficult. E. g.
some unhealty increase of heart muscle may be overseen. Providing an automatic
registration process which has to work within a minute would enhance the diag-
nostic quality using the automatically registrated CT scans, saves time for the
registration process which is now obsolete and finally leaves more time for the
diagnosis using the enhanced alignment of the CT datasets.

Figure 3.17: Matching of 2 different CT sets

3.6.1 Transformation Matrix

A transformation matrix M has to be found, which maps the nodes P from the
matching graph to the nodes P ′ in the destination space (3.4). The different
instances of the matrix M are found by taking four marker points each from
both graphs. Assuming that the mapped points P are exactly transformed to
the points O which belong to the graph in destination space we can set up 3
linear equations (3.5), (3.6) and (3.7) to obtain the coefficients for the matrix M
using the 8 marker points Pi,j,k,l and Oi,j,k,l. Whenever the linear equation cannot
be solved numerically stable the matrix is directly dropped because it probably
would not give us an accurate transformation.

M · P =


m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4

 · P = P ′ (3.4)

25

CHAPTER 3. FILTERS AND METHODS


P i

x P i
y P i

z 1
P j

x P j
y P j

z 1
P k

x P k
y P k

z 1
P l

x P l
y P l

z 1



m1,1

m1,2

m1,3

m1,4

 =


Oi

x

Oj
x

Ok
x

Ol
x

 (3.5)


P i

x P i
y P i

z 1
P j

x P j
y P j

z 1
P k

x P k
y P k

z 1
P l

x P l
y P l

z 1



m2,1

m2,2

m2,3

m2,4

 =


Oi

y

Oj
y

Ok
y

Ol
y

 (3.6)


P i

x P i
y P i

z 1
P j

x P j
y P j

z 1
P k

x P k
y P k

z 1
P l

x P l
y P l

z 1



m3,1

m3,2

m3,3

m3,4

 =


Oi

z

Oj
z

Ok
z

Ol
z

 (3.7)

3.6.2 Matching differences

The transformation and matching quality is given by the ”distance” between
the reference graph after transformation using M and the destination graph. To
handle situations like missing nodes in both graphs, the final distance is computed
by the sum of distances matching the mapped graph P’ to the graph G and the
other way around assuming that G is the mapped graph. Each of both distance
computations is divided by the number of points in the mapped graph. The
distance between two graphs itself is given by the sum of the square distances
of the nodes P ′ from the mapped graph to the nearest edges E(O) of the other
graph. A good estimation for the nearest edge is to determine the nearest graph
node Onearest for every point P ′. Then both neighbors of node Onearest are taken
to compute the length of the vector perpendicular to the two outgoing edges of
Onearest to the node P ′ (Figure 3.18). The smallest distance to both edges is used
as the minimal distance.

3.6.3 Matrix decomposition

Using the previously described criteria to decide which transformation matrix is
optimal, there may exist some matrices which map the points in a totally wrong
way like mirroring the data by obtaining a smaller computed minimum distance
as the real matching would have. To give the algorithm a hint for elimination of a
large amount of such cases the transformation matrix M is decomposed into basic
transformations which can be used to restrict the transformations. For instance
it does not make sense to rotate the whole dataset around 180 degrees because
the patient probably would not lie turned around in the CT scanner. A more
obvious example is given by the shearing components. Because shearing does not
preserve similarity the shearing components should be restricted to values near

26

3.6. MATCHING AND REGISTRATION

Figure 3.18: Computation of matching difference

zero. It is also impossible that the patients heart is mirrored between two CT
scans.

To find the basic transformation matrices the transformation matrix M is de-
composed to the matrices

M = H · S ·Rz ·Rx ·Ry · T

Because we work with homogenous coordinates for points P and O and there
are no projective components in our system the last row of matrix M is already
(0, 0, 0, 1). Then the 12 degrees of freedom given by the matrix M can be seen
as parameters for basic transformations :

• 3 Translation components tx, ty, tz by matrix T

• 3 Rotation matrices Rn around axis n: Rx, Ry, Rz

• 3 Scaling components sx, sy, sz with matrix S

• 3 Shearing components h1, h2, h3 in the shearing matrix H

To understand the meaning of the transformations better we can imagine them
as being performed by a doctor for registration knowing the parameters for the
basic transformations: First the dataset is translated (T) for a coarse alignment
of the CT scans, then it is rotated around y, x and finally the z axis (Ry, Rx,
Rz). The last transformations are done by scaling (S) and shearing (H) of the
dataset. The scaling can be used e. g. if the CT data was taken with different CT
scanners having different resolutions to allow the algorithm an automatic scaling
of the matching CT scan to the size of the destination data. The shearing matrix
is the only one with shearing coefficients which should be near to zero even if
similar datasets should be matched. Possible circumstances like different patient

27

CHAPTER 3. FILTERS AND METHODS

placements or the beating of the heart are usually transformations without large
shearing coefficients. If we want to obtain only similarity transformations we are
also able to rebuilt the transformation matrix M with the basic transformations
omitting the shearing matrix H.

To decompose the matrix we try to sucessively eliminate matrix entries by split-
ting up the matrix into a matrix with more zero components and a basic trans-
formation. If any step of the decomposition encounters operations that indicate
numerical instability (like division numbers very close to zero) the matrix is im-
mediately dropped to avoid unpredictable mappings.

Translation decomposition

The last column of the matrix M is decomposed by a translation matrix which
sets the last column of the matrix M to (0, 0, 0, 1)T . The decomposition of M can
be written as the new matrix M ′ multiplied by the transformation components:

M = M ′ · T =


m1,1 m1,2 m1,3 0
m2,1 m2,2 m2,3 0
m3,1 m3,2 m3,3 0

0 0 0 1

 ·


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


Computing the rightmost column values for matrix M by multiplying the last

column from T with the corresponding rows of matrix M ′ hands us the implicit
solution for the translation matrix T.m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

 ·
txty
tz

 =

m1,4

m2,4

m3,4

 (3.8)

Because the components m[1,3],[1,3] remain unchanged due to the identity di-
agonal and the zero components of the transformation matrix the new matrix M ′

is a copy of matrix M with the last column set to (0, 0, 0, 1)T .

Rotation decomposition

The Givens rotation [14] is used to eliminate the remaining entries different from
zero below the diagonal using rotation matrices. The first rotation around the
y axis is used to eliminate the entry m′3,1 of the new matrix M ′′. The rotation
matrix Ry is given by

Ry =


cos(α) 0 −sin(α) 0

0 1 0 0
sin(α) 0 cos(α) 0

0 0 0 1


28

3.6. MATCHING AND REGISTRATION

To obtain the new matrix M ′′ with an entry m
′′
3,1 set to zero the matrix multipli-

cation can be written reordered:

M ′ = M ′′ ·Ry ⇐⇒M ′ ·R−1
y = M ′′

The inverse rotation matrix R−1
y equals the matrix Ry using the inverse angle.

Assuming that m
′′
3,1 should be eliminated we obtain the corresponding rotation

angle for the matrix Ry:

0 = m
′

3,1cos(α
′)−m′

3,3sin(α′)⇐⇒ α′ = atan

(
m

′
3,1

m
′
3,3

)

The final matrix M ′′ is computed by creating the rotation matrix R−1
y with the

angle α′ and multiplication of M ′ with the rotation matrix. The rotation angle
for the forward transformation is given by the angle −α′.

The elimination of the two remaining components below the diagonal works with
the same procedure using rotations around the x and z axes giving angles β and γ.

Scaling and Shearing decomposition

After the decompositions using translation and rotation matrices the remaining
matrix M (3) has zero-components at the translation components and at the lower
triangle of the matrix. Now we assume that the upper diagonal matrix can be
eliminated by a shearing matrix with components for shearings acting from y
and z on the x components and to the y components from the z axis. The final
decomposition can be rewritten using the shearing and scaling matrix S:

M (3) = H · S =


m

(3)
1,1 m

(3)
1,2 m

(3)
1,3 .

. m
(3)
2,2 m

(3)
2,3 .

. . m
(3)
3,3 .

. . . 1

 =


1 h1 h2 .
. 1 h3 .
. . 1 .
. . . 1



sx . . .
. sy . .
. . sz .
. . . 1


This can be computed by reordering the single equations for the components of
the matrix M (3):

sx = m
(3)
1,1 sy = m

(3)
2,2 sz = m

(3)
3,3

h1 · sy = m
(3)
1,2 ⇐⇒ h1 =

m
(3)
1,2

sy

h2 · sz = m
(3)
1,3 ⇐⇒ h2 =

m
(3)
1,3

sz

h3 · sz = m
(3)
2,3 ⇐⇒ h3 =

m
(3)
2,3

sz

Given all decomposition components the original matrix M can be recom-
puted by the 12 degrees of freedom (h1, h2, h3, sx, sy, sz, α, β, γ, tx, ty, tz) creating

29

CHAPTER 3. FILTERS AND METHODS

the well understandable basic transformation matrices:
m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

0 0 0 1

 =


1 h1 h2 .
. 1 h3 .
. . 1 .
. . . 1

·

sx . . .
. sy . .
. . sz .
. . . 1

 ·Rz·Rx·Ry·


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


3.6.4 Restrictions

So far the parameters for the basic transformations were determined. Now we
use this information to check whether this matrix represents a meaningful trans-
formation or if the matrix should be ignored in further processing. If the values
are outside of an acceptable margin the transformation matrix M is dropped,
thus saving much computation time which would be used for the computation of
the transformation quality.

The following parameters were determined empirically for determining valid match-
ing matrices M :

• relative rotation angle: MAX(|α|, |β|, |γ|) < 45◦

• scale factor sx, sy, sz ∈ [0.7; 1.1]

• shear factor h1, h2, h3 ∈ [−0.3; 0.3]

• maximum relative translation: MAX(|tx|, |ty|, |tz|) < 128.0

The parameters for the rotation and shearing matrix are independent of the
resolution. Because the translation and scaling restriction parameters depend
strongly on the resolution, they should be automatically adapted for different
sizes of CT datasets.

3.6.5 Pretranslation

To create an automatic registration method with relative translation restrictions
we pretranslate the centers of both datasets to the origin. Therefore a pretrans-
lation matrix Mt is used to map all points P and O to align both centers to
the origin (0, 0, 0) before doing any computations. E. g. for a dataset with the
resolution (256, 256, 200) the pretranslation matrix would be

P =


1 . . −128
. 1 . −128
. . 1 −100
. . . 1


30

3.6. MATCHING AND REGISTRATION

Matching datasets with different resolutions is accomplished by using an individ-
ual pretranslation matrix for every dataset. The matching algorithm as previously
described is summarized in algorithm (4) in short form.

3.6.6 Reduce matching runtime

Using a direct implementation of the algorithm would lead to a runtime of

O

((
N !

(N − 4)!

)2
)

because there are N !
(N−4)!

combinations to select 4 nodes from the graph Gp and

also N !
(N−4)!

combinations to select 4 nodes of graph Go. Reducing the possible
combinations using a monte carlo method should be avoided because there is
always the possibility that the matching gets stuck in a local extremum.

Using far distant points

To find a better method we consider three different types of errors:

The first error type is introduced by the discretization. The algorithm uses a
grid where every sphere center as well as the particles and the respective graph
nodes are placed on the grid. To reconstruct the transformation matrix M the
algorithm takes four points of matching space as markers to transform them to
the corresponding marker points in the destination space. Let us assume that
this four points lie very close together describing a cube with a unit sidelength
and that this marker points are transformed by the identity matrix to the four
corresponding nodes in destination space. If a voxel in the matching CT dataset
is modified slightly this difference may lead to a jump of one cube node in desti-
nation space to an adjacent gridpoint (caused by to the discretization). Creating
a transformation matrix out of this jittered cube nodes would cause only a small
distance between the mapped cube nodes P ′ and the destination cube nodes O
but a transformation of a point which is far away from the cube using the matrix
based on the jittered cube would cause a much larger distance. The reason is
that the transformation properties of matching space are described by 4 points
lying close together. Jittering of the nodes on the cube produces small distance
errors for points within the cube but large distance errors for points with a large
distance to the cube. Thus using four points with a large mutual distance avoids
this conditional problem.

31

CHAPTER 3. FILTERS AND METHODS

The second error type is caused by anatomical differences. For instance as-
suming that the heart is moving with every beat and therefore the points do not
lie in the same position, the same assumptions can be made as for the first error
type: The points used to compute the transformation matrix should be restricted
by a minimum distance.

The third error type is also circumvented by demanding a minimum distance
for the four marker points: If the points are close together with a distance less
than one on a grid and all possible node placements on this grid are allowed, the
only possible rotation angles around the x, y and z axes would be {n · π : n ∈ Z}
radians. It is obviously that far distant points allow finer angles for rotations.

Another improvement used in the algorithm is the usage of a maximum dis-
tance constraint between unmapped points, because the probability is high that
the distance between the marker point P and the corresponding point O is below
some value (e. g. half the size of the domain).

As already mentioned the solution to the three problems is using only nodes with
a given minimum distance to create a better conditioned problem. This avoids the
computation of the transformation matrix for many points. Omitting impossi-
ble node combinations and nodes producing a bad conditioned problem decreases
computation time strongly in the empirical tests.

Selection of marker Points

The possible selections of the marker points without loss of accuracy was also
improved with the following idea: The four loops iterating over the possible
nodes of the reference graph should select the nodes incrementally according to
their index if the graph nodes are stored in an array. If the indices of the nodes
are ordered, no combination of the four marker points is selected twice for one
matching. This enhancement is possible because the necessary permutation to
the corresponding marker nodes of the other graph is done by selecting the nodes
of the destination graph with the usual nested loops.

Dynamic adaptive minimum Distance

A fixed minimum distance for the selection of marker points would produce un-
predictable runtimes. If the algorithm is going to run automatically, this can lead
to runtimes of one or more days in the worst case if there are too many graph
nodes and those are aligned in a special order. Therefore a more careful marker
point selection was implemented specifying the maximum allowed points to use
from one graph to construct the transformation matrix.

32

3.6. MATCHING AND REGISTRATION

Starting at a large value for the desired value minimum distance where only
a few or no points fulfill this distance, the possible combinations are counted in
every round. If the allowed amount of possible matching combinations was not
reached, the allowed minimum distance is decreased and the possible combina-
tions are counted again.

After the possible combinations exceeded the allowed value, we have the lower
border for the minimum distance constraining the possible combination of the
marker nodes of one graph. Computing these constraints for both graphs, an
almost constant runtime can be achieved offering dynamic adaptibility to the
graph resolution as well as specifying the accurateness of the matching for both
graphs by a single parameter.

33

CHAPTER 3. FILTERS AND METHODS

Algorithm 4 Structure of matching algorithm with given restriction parameters
1: Input:
2: matching graph Gp with nodes P stored in vertex vector V p = (P0, P1, ..., Pnp)

and edges Ep = {e|e ∈ (i, j), 0 ≤ i < j ≤ np − 1}
3: destination graph Go with nodes O stored in vertex vector V o =

(O0, O1, ..., Ono) and edges Eo = {e|e ∈ (i, j), 0 ≤ i < j ≤ no − 1}
4:
5: {Pretranslation}
6: for all n ∈ [0;np] do
7: V p[n] = Mt · V p[n]
8: end for
9: for all n ∈ [0;no] do

10: V o[n] = Mt · V o[n]
11: end for
12:
13: var minimum distance = infinite;
14: matrix best matrix =

(
0[0..4],[0..4]

)
;

15:
16: for all P i,j,k,l ∈ G(P), |{i, j, k, l}| = 4 do
17: for all Oi,j,k,l ∈ G(O), |{i, j, k, l}| = 4 do
18: {Compute matching matrix M}
19: ...
20:
21: {Decompose matrix M}
22: ...
23: {Check restrictions}
24: if MAX(|tx|, |ty|, |tz|) < 100.0 and MAX(|α|, |β|, |γ|) < 90◦ then
25: if sx, sy, sz ∈ [0.7; 1.3] and h1, h2, h3 ∈ [−0.3; 0.3] then
26: {Compute quality of matching}
27: distance = 0
28: for all P ∈ V p do
29: P ′ = M · P
30: distance+ = DIST (P ′, ”nearest edge of graph Go”)2;
31: end for
32: if distance < minimum distance then
33: {Better matching was found}
34: mimimum distance = distance;
35: best matrix = M ;
36: end if
37: end if
38: end if
39: end for
40: end for

34

Computer Science is no more about com-
puters than astronomy is about telescopes.

E. W. Dijkstra 4
Results

4.1 2D Matching

A slightly different implementation was used for testing purposes to match 2D
scans and to test the general algorithm. Because we work on 2D images there
are only short tubic structures in the given cross sections of the vessels giving
small striplines and circular areas due to cross sections of tubes represented by
a one-node-stripline. To get 2D slices out of the 3D datasets the slices with the
same characteristic vessels were roughly preselected. A CT dataset with clear
vessel borders was used to generate the reference graph given in Figure 4.1 for
further matchings.

Figure 4.1: Reference CT slice and computed reference graph

The main difference between 2D and 3D matchings is that three points are
enough to create the transformation matrix M . Applying the algorithm with
the same parameters as for the creation of the reference graph leads to exact
matchings of the 3 testing cases given in Figure 4.2. The matching distance was
computed using only one point for every stripline given by the midpoint of the
stripline. Even having this dense amount of information a successful matching
could be obtained in the slices given by Figure 4.2.

35

CHAPTER 4. RESULTS

Figure 4.2: Correctly matched CT slices

An example of a mismatched slice is given in Figure 4.3. The reason for the
failure of the algorithm is the missing information about the artery going down
at the backbone and because only midpoints of striplines are used to compute
the transformation matrix M .

Figure 4.3: Mismatched CT slices

Selecting the 2D slices while caring for the same characteristics as the reference
data and implementing a matching using all nodes (not only the midpoint selector
for the striplines) should make it possible to obtain perfect matchings in 2D.
Because the task was to match and registrate 3D scans, no further work was
done on 2D slices.

36

4.2. 3D MATCHING

4.2 3D Matching

To test the presented algorithm, a reference dataset was mapped to 13 arbitrary
datasets. The datasets were downscaled to half of their size (256 · 256 · slices/2)
to decrease the memory usage as well as the computation time for the sphere
filter. The reference graph was created from a dataset with the most regular
heart structure and a good distribution of the contrast medium at the blood
cavities. To reduce the number of nodes and therefore the computation time for
matching, the parameters were modified to create larger edges and less nodes for
the reference graph. The matching to the destination graphs was done using the
same parameters for every CT dataset to test a full automatical registration. To
restrict the allowed nodes for comparison avoiding a computation time depend-
ing on the number of nodes, the minimum distance between the matching nodes
of one graph is precomputed for every graph restricting the allowed number of
test-matchings. The FFTW [8] for the sphere filter creates so called plans for
every time the filter is used. This time is not included into the statistics because
those plans can be precomputed for every possible case if the sphere filter is used
in a productive system.

The parameters used in the program are given in figure 4.4. The duration for
each filter and the results can be found in table 4.1. The last row in the table
shows the percentage of the concordances found.

The value for the correct matching was manually taken. To find the concor-
dance nodes representing the corresponding graph edges and blood cavities, the
following method was applied: Each node of the reference graph was projected to
the destination graph. The nearest node of the projected node to the destination
graph is assumed to be the corresponding one, if the distance was less than the
sphere radius at the projected node multiplied by a factor of 1.5. Otherwise no
correspondance was found for the projected node. The matching of one area is
assumed to be positive, only if at least one concordance node was found and if
no mismatching concordance exists for this area.

37

CHAPTER 4. RESULTS
D

a
ta

se
t:

B
K

1
9
4
5

F
I
N

1
9
2
8

K
H

1
9
5
2

K
M

1
9
3
5

M
P

1
9
4
7

N
E

U
1
9
5
0

P
M

1
9
3
8

S
e
c
o
n
d
s

fo
r

fi
lt

e
r
s
:

(a
d
d
itio

n
a
l
in

fo
r
m

a
tio

n
)

S
p
h
e
r
e
:

8
.7

9
6

5
.1

5
7

1
7
.7

5
6

9
.4

2
7

2
3
.5

1
9

5
.4

2
1

2
1
.8

1
1

G
r
a
d
ie

n
t
:

0
.8

7
6

0
.4

6
2

1
.1

3
2

0
.8

3
0

1
.0

1
2

0
.4

6
7

1
.5

6
5

P
a
r
t
ic

le
s
:

0
.8

7
6

0
.3

6
2

1
.1

4
4

0
.3

9
1

0
.7

2
4

0
.4

0
2

1
.4

9
3

(#
p
a
r
tic

le
s)

1
1
2
3

2
6
8
8

2
2
9
7

1
2
2
8

1
8
6
7

2
3
4
3

3
9
0
6

G
r
a
p
h
:

0
.0

0
2

0
.0

0
5

0
.0

0
6

0
.0

0
3

0
.0

0
5

0
.0

0
7

0
.0

1
0

(#
g
ra

p
h

n
o
d
e
s)

2
9

2
9

5
5

3
2

4
8

3
3

7
9

(#
g
ra

p
h

str
ip

s)
4

4
1
2

8
1
1

1
0

2
1

M
a
t
c
h
in

g
:

1
9
.9

7
4

4
.8

6
9

1
1
.7

8
2

1
7
.3

2
6

1
1
.4

7
1

2
.6

1
7

1
.2

6
7

T
o
t
a
l

s
e
c
o
n
d
s
:

3
0
.5

2
1
0
.8

5
3
1
.8

1
2
7
.9

7
3
6
.7

3
8
.9

1
2
6
.1

4

C
o
n
c
o
r
d
a
n
c
e
s
:

N
o
d
e
s

o
f

r
e
fe

r
e
n
c
e

d
a
t
a
s
e
t

c
o
n
n
e
c
t
e
d

t
o

d
e
s
t
in

a
t
io

n
d
a
t
a
s
e
t

R
ig

h
t

h
e
a
r
t

c
h
a
m

b
e
r
:

o
p

√
√

o
p

√
√

M
R

ig
h
t

a
t
r
iu

m
:

o
√

√
o
p

√
√

M
L

e
ft

je
a
r
t

c
h
a
m

b
e
r
:

√
√

√
√

√
√

M
L

e
ft

a
t
r
iu

m
:

√
√

√
√

M
√

√

A
o
r
t
a
:

√
√

√
√

√
√

√

A
o
r
t
a

d
e
s
c
e
n
d
e
n
s
:

√
√

√
√

√
√

√

C
o
r
r
e
c
t

m
a
t
c
h
in

g
s

(
1
.0

=
1
0
0
%

)
:

1
.0

1
.0

1
.0

1
.0

0
.8

3
1
.0

0
.5

D
a
ta

se
t:

P
S
1
9
3
0

P
S
1
9
4
4

S
A

H
1
9
3
5

S
F

X
1
9
3
0

T
A

1
9
4
6

V
M

1
9
4
1

S
e
c
o
n
d
s

fo
r

fi
lt

e
r
s
:

(a
d
d
itio

n
a
l
in

fo
r
m

a
tio

n
)

S
p
h
e
r
e
:

1
7
.7

8
5

1
0
.1

1
2

5
.4

6
5

4
.4

7
7

1
2
.3

2
7

1
6
.5

3
8

G
r
a
d
ie

n
t
:

1
.3

4
6

0
.6

8
4

0
.4

0
7

0
.5

0
5

1
.0

9
8

0
.9

9
1

P
a
r
t
ic

le
s
:

1
.8

1
8

0
.6

4
4

0
.2

1
4

0
.1

0
0

0
.6

9
2

1
.3

2
1

(#
p
a
r
tic

le
s)

5
3
1
3

1
0
3
4

1
3
0
5

5
6
6

1
9
2
7

2
4
8
4

G
r
a
p
h
:

0
.0

1
5

0
.0

0
3

0
.0

0
3

0
.0

0
2

0
.0

0
4

0
.0

0
5

(#
g
ra

p
h

n
o
d
e
s)

8
7

3
1

1
9

1
9

4
0

5
3

(#
g
ra

p
h

str
ip

s)
2
0

6
4

7
6

1
0

M
a
t
c
h
in

g
:

6
.1

4
8

1
0
.5

7
2

1
.7

7
2

3
.0

7
1

6
.3

0
2

2
2
.3

6
6

T
o
t
a
l

s
e
c
o
n
d
s
:

2
7
.1

1
2
2
.0

1
7
.8

6
8
.1

5
2
0
.4

2
4
1
.2

2

C
o
n
c
o
r
d
a
n
c
e
s
:

N
o
d
e
s

o
f

r
e
fe

r
e
n
c
e

d
a
t
a
s
e
t

c
o
n
n
e
c
t
e
d

t
o

d
e
s
t
in

a
t
io

n
d
a
t
a
s
e
t

R
ig

h
t

h
e
a
r
t

c
h
a
m

b
e
r
:

√
√

√
o

√
P

R
ig

h
t

a
t
r
iu

m
:

√
√

√
o

√
√

L
e
ft

h
e
a
r
t

c
h
a
m

b
e
r
:

√
√

√
F

√
√

L
e
ft

a
t
r
iu

m
:

√
√

√
√

√
M

A
o
r
t
a
:

√
√

M
M

√
√

A
o
r
t
a

d
e
s
c
e
n
d
e
n
s
:

√
√

√
√

√
√

C
o
r
r
e
c
t

m
a
t
c
h
in

g
s

(
1
.0

=
1
0
0
%

)
:

1
.0

1
.0

0
.8

3
0
.5

1
.0

0
.6

7

√
:

C
o
rre

c
t

m
a
tc

h
in

g
M

:
M

ism
a
tc

h
-

so
m

e
n
o
d
e
s

o
f

th
e

re
fe

re
n
c
e

g
ra

p
h

a
re

m
a
p
p

e
d

to
a

w
ro

n
g

a
re

a
in

th
e

d
e
stin

a
tio

n
d
a
ta

se
t

F
:

F
a
ile

d
-

th
e

m
a
tc

h
in

g
fa

ile
d

to
fi

n
d

a
n
y

c
o
rre

sp
o
n
d
in

g
p

o
in

ts
o
:

B
lo

o
d

c
a
v
ity

is
n
o
t

v
isib

le
in

d
e
stin

a
tio

n
d
a
ta

se
t

d
u
e

to
m

issin
g

c
o
n
tra

st
m

e
d
iu

m
o
p
:

B
lo

o
d

c
a
v
ity

is
n
o
t

v
isib

le
b
u
t

th
e

re
fe

re
n
c
e

g
ra

p
h

is
m

a
p
p

e
d

to
th

e
c
o
rre

c
t

c
o
rre

c
t

a
re

a
s

in
th

e
d
e
stin

a
tio

n
d
a
ta

se
t

P
:

P
a
rtia

lly
m

ism
a
tc

h
e
d

n
o
d
e
s

C
o
m

p
u
te

r:
In

te
l(R

)
C

o
re

(T
M

)2
Q

u
a
d

C
P

U
Q

6
6
0
0

@
2
.4

0
G

H
z
,

2
G

B
R

A
M

O
S
:

D
e
b
ia

n
,

L
in

u
x

v
e
rsio

n
2
.6

.2
6
-1

-a
m

d
6
4

T
ab

le
4.1:

R
esu

lts
ap

p
ly

in
g

th
e

algorih
m

to
arb

itrary
C

T
d
atasets

38

4.2. 3D MATCHING

Sphere Filter:
min value contrast medium 180
max value contrast medium 850
min sphere radius 6
valid error 0.1
fft threads 4

Particle Filter:
initial particle distance 1
stop gradient 10
min start radius 10

Graph Filter:
min next distance 15
max next distance 20

Matching Filter:
max unprojected distance 128
min matrix generation point distance 20
mutual graph distance 1
adaptive max points 2000
threads 4

Matrix restrictions:
max rotation angle 45
min scale factor 0.3
max scale factor 1.3
min shear factor -1.1
max shear factor 1.1
max translation dist x 128
max translation dist y 128
max translation dist z 100
pre translation x 128
pre translation y 128
pre translation z 100

Visualization for the Registration:
matching max connection distance 1.5

Figure 4.4: Parameters used for the different filters (fixed for every mapping)

39

CHAPTER 4. RESULTS

4.3 Conclusions

The table 4.1 shows, that all desired areas were found in 61% of the given datasets.
This are datasets which have the most similarity to the reference dataset, even
if the datasets have not been aligned in a preprocess step. This leads to the
assumption, that CT datasets of the same patient would be matched correctly in
almost every case.
An improvement of the alignment could be obtained in the remaining 39% even if
not all areas could be registrated. The reason for the partially mismatchings are
CT datasets with an unregular heart structure (Enlarged muscles, deformed left
atrium, etc.). A way to find better concordances for deformed hearts would be
to use more than one reference graph representing different heart deformations.
This can be done because the matching filter takes less than 10 seconds in average
for the test datasets.
Finally, the aorta descendens was found in 100% of the datasets. The algorithm
improved the alignment in all cases with an average time of 23 seconds applying
the whole algorihm.

40

4.4. FURTHER UTILITY

4.4 Further utility

The presented algorithm is not only applicable for blood vessels. Also trabecular
bone structures can be represented with graphs as shown in Figure 4.5 if the
tubular structures have a tubular form. For further work, using a combination of
graph and mesh representations as well as a local tresholding filter (because the
centered structures become darker) should make it possible to represent even the
plate like structures of the trabecular bone structures for a structural analysis of
the bone.

Figure 4.5: Snapshot showing representation of bone structures: Tubic like struc-
tures are represented very well in the outer area whereas the plate like structures
are not representated by the graph

41

I think computer viruses should count as life. I think it says some-
thing about human nature that the only form of life we have created
so far is purely destructive. We’ve created life in our own image.

Stephen Hawking (1942 -) 5
Possible further Improvements and Usage

This chapter was written to give ideas for possible improvements which can be
implemented to enhance the quality, adaptability and computation time for the
presented and also other segmentation and registration problems. Some improve-
ments try to handle problems which occur due to the discretization with the seg-
mentation of smaller tubic structures. This also makes it necessary to improve
the registration speed by selecting the marker nodes more carefully, thus avoiding
the computation of unnecessary transformation matrices.

Bilinear interpolation for particle trajectories: For large tubic structures
as they are in current coronary CT data scans, the results are satisfying without
any interpolation for particle trajectories. It would be better to use a bilinear
interpolation for finer tubic structures because the particles would be denser at
the vessel centers following the interpolated gradient instead of ”jumping” on the
discrete grid.

Sparse graph representation using spline curves: The graph which was
built from the particle set represents the tubic centers using straight lines. The
graph nodes can be extended with parameters describing a spline curve, which
minimizes the distance between the particles and the curve. This would reduce
the amount of graph nodes and produce a better representation of the blood ves-
sels and a higher accuracy for the computation of the matching distance between
the transformed points P ′ and the vessel centers represented with splines.

Aliased kernel for spherical filters: Better spherical results could be ob-
tained by using an aliased kernel. Again, this is important for smaller blood
vessels. An aliased kernel is created by setting the kernel values to the fraction
of the cell which is covered by the sphere surface band described by the space
between the sphere with radius r − 1 and radius r.

Segmentation of omitted nodes at stripline endings: Nodes at stripline
endings are sometimes omitted because they lie within the radius min dist of

43

CHAPTER 5. POSSIBLE FURTHER IMPROVEMENTS AND USAGE

the stripline ending node. Using a small value for min dist would decrease this
problem with the undesired behaviour that the created graph has more nodes.
Therefore a final test at line endings has to be made if there are omitted nodes
which can be used to extend the stripline.

Monte Carlo and hierarchical methods for marker point selection: One
possibility to speed up the registration process is to use randomly selected points
for the transformation matrix M . As already described in the registration chapter
using a monte carlo based method may lead to a local extremum.
An alternative could be to use a hierarchical method like an octtree. First this
accellerates the selection of points within a minimum distance. Secondly the
transformation matrix can be dropped for cluster nodes, which are given by the
centers of the octtree cells near the leaves representing graph nodes. Dropping a
matrix constructed from cluster nodes also drops all possible combinations using
nodes covered by the cells of the cluster nodes. This method demands a modified
version of the restrictions which are necessary for an accurate implementation
of the different sizes of the cluster cells. E. g. the restriction of the translation
transformation has to be extended by the possible movements of the cluster nodes
within the corresponding cluster cell.

Maximum distance of construction nodes: An easy method to decrease
the possible matchings is to introduce a maximum distance between the con-
struction nodes. This makes the method conditionally slightly more unstable
but decreases the possible matchings. Therefore the maximum distance between
the construction nodes specifies the best conditionality of the registration algo-
rithm for the resulting transformation matrix M , the minimum distance gives
the border for the worst conditionality for the selection of marker points.

Matching using properties of graph: So far only the distance of nodes to
graph edges was used to compute the quality of the matching. This can be
improved by using hints of the graphs. E. g. the information if registrated tubes
are described by neighboring edges in both the matching and destination graph
can be used to add bonus points to the matching quality. Another improvement
would be to search for similarities in the slopes of the matched edges. Therefore
using graphs for advanced computation of the matching quality makes it possible
to improve the prevention of possible totally wrong mismatchings even if the
computed matching quality is better than the expected matching.

Matrix construction on graph nodes: Using the discretized graph nodes
(representing the particles) for the matrix construction leads to the problem that
it is still possible that at least one point for the optimal matrix construction
is not given by a graph node but lies on a graph edge. The restriction for the

44

marker nodes to a minimum distance solves this problem slightly and should
hand back a good solution for the tranformation matrix. To get better results
for the transformation matrix, the matching points of the destination graph (or
matching graph) can be moved virtually along their corresponding neighbored
edges while performing the same computations as done for the registrations to
get a better matching.
Another method would be to move the marker points within a rectangle assuming
that the graph does not represent the blood vessels accurately.

Matching positive abort: Abort the matching immediately with the recent
transformation matrix if the computed overall distance is below a heuristic value
which specifies the accurateness of the transformation matrix and the matching.

Spherical shrinking to get matching points: Another method would be a
spherical shrinking to select matching nodes: A sphere is set arount the whole
domain centered either at the domain center or the particle center of gravity. To
get more matching points for registration this sphere is shrinked successively and
the new points outside the sphere are included into the set of allowed points used
to create the transformation matrix M .

Avoid edge construction: If the graph construction algorithm creates a new
edge, it should be verified if this edge lies within a blood vessel by walking
voxelwise along the edge while checking the sphere data because it is possible
that an edge is created over 2 neighbored blood vessels

Improving neighbor connection of striplines: In special situations it can
happen that the connections at vessel bifurcations are not found to represent the
cavaties correctly. A reason is e. g. that the last 2 ending nodes dont aim in
the correct direction. This can be solved by emitting more virtual particles at a
sphere surface with the radius [min dist;max dist] around the stripline ending
nodes.

45

Bibliography

[1] Stephan Achenbach. Computed tomography coronary angiography, 2006.

[2] Nuklearmed. Klinik der TU München; Germany.
http://www.nuk.med.tu-muenchen.de/.

[3] DICOM-Toolkit.
http://libkdtree.alioth.debian.org/.

[4] Marco Francone; et al. Ecg-gated multi-detector row spiral ct in the assess-
ment of myocardial infarction: correlation with non-invasive angiographic
findings, 2005.

[5] Mehdi Namdar MD; Thomas F. Hany MD; et al. Integrated pet/ct for the
assessment of coronary artery disease: A feasibility study, 2005.

[6] Paul Schoenhagen MD; Sandra S. Halliburton; et al. Noninvasive imaging
of coronary arteries: Current and future role of multidetector row ct, 2004.

[7] KD-Tree C++ interface.
http://libkdtree.alioth.debian.org/.

[8] FFTW Library.
http://www.fftw.org/.

[9] R. Stunken; R. Logen. Perfect graph matching in linear runtime, 2009.

[10] Debian Linux OS.
http://www.debian.org/.

[11] Bader Michael PD. Real fourier transformation.
http://www5.in.tum.de/lehre/vorlesungen/algowiss/ss08/material.html.

[12] Markus Schwaiger MD; Sibylle Ziegler PhD; Stephan G. Nekolla PhD.
Pet/ct: Challenge for nuclear cardiology, 2005.

[13] Martin Schreiber. Project webpage.
http://home.in.tum.de/~schreibm/idp/.

[14] Huckle Thomas; Schneider Stefan. Numerik für Informatiker. Springer,
Berlin, September 2002.

47

